-
Notifications
You must be signed in to change notification settings - Fork 331
/
evaluate_mAP.py
300 lines (261 loc) · 12.3 KB
/
evaluate_mAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#================================================================
#
# File name : evaluate_mAP.py
# Author : PyLessons
# Created date: 2020-08-17
# Website : https://pylessons.com/
# GitHub : https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3
# Description : used to evaluate model mAP and FPS
#
#================================================================
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.python.saved_model import tag_constants
from yolov3.dataset import Dataset
from yolov3.yolov4 import Create_Yolo
from yolov3.utils import load_yolo_weights, detect_image, image_preprocess, postprocess_boxes, nms, read_class_names
from yolov3.configs import *
import shutil
import json
import time
gpus = tf.config.experimental.list_physical_devices('GPU')
if len(gpus) > 0:
try: tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError: print("RuntimeError in tf.config.experimental.list_physical_devices('GPU')")
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
matlab: for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
"""
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
def get_mAP(Yolo, dataset, score_threshold=0.25, iou_threshold=0.50, TEST_INPUT_SIZE=TEST_INPUT_SIZE):
MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge)
NUM_CLASS = read_class_names(TRAIN_CLASSES)
ground_truth_dir_path = 'mAP/ground-truth'
if os.path.exists(ground_truth_dir_path): shutil.rmtree(ground_truth_dir_path)
if not os.path.exists('mAP'): os.mkdir('mAP')
os.mkdir(ground_truth_dir_path)
print(f'\ncalculating mAP{int(iou_threshold*100)}...\n')
gt_counter_per_class = {}
for index in range(dataset.num_samples):
ann_dataset = dataset.annotations[index]
original_image, bbox_data_gt = dataset.parse_annotation(ann_dataset, True)
if len(bbox_data_gt) == 0:
bboxes_gt = []
classes_gt = []
else:
bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
ground_truth_path = os.path.join(ground_truth_dir_path, str(index) + '.txt')
num_bbox_gt = len(bboxes_gt)
bounding_boxes = []
for i in range(num_bbox_gt):
class_name = NUM_CLASS[classes_gt[i]]
xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
bbox = xmin + " " + ymin + " " + xmax + " " +ymax
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
# count that object
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
gt_counter_per_class[class_name] = 1
bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax]) + '\n'
with open(f'{ground_truth_dir_path}/{str(index)}_ground_truth.json', 'w') as outfile:
json.dump(bounding_boxes, outfile)
gt_classes = list(gt_counter_per_class.keys())
# sort the classes alphabetically
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
times = []
json_pred = [[] for i in range(n_classes)]
for index in range(dataset.num_samples):
ann_dataset = dataset.annotations[index]
image_name = ann_dataset[0].split('/')[-1]
original_image, bbox_data_gt = dataset.parse_annotation(ann_dataset, True)
image = image_preprocess(np.copy(original_image), [TEST_INPUT_SIZE, TEST_INPUT_SIZE])
image_data = image[np.newaxis, ...].astype(np.float32)
t1 = time.time()
if YOLO_FRAMEWORK == "tf":
if tf.__version__ > '2.4.0':
pred_bbox = Yolo(image_data)
else:
pred_bbox = Yolo.predict(image_data)
elif YOLO_FRAMEWORK == "trt":
batched_input = tf.constant(image_data)
result = Yolo(batched_input)
pred_bbox = []
for key, value in result.items():
value = value.numpy()
pred_bbox.append(value)
t2 = time.time()
times.append(t2-t1)
pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox]
pred_bbox = tf.concat(pred_bbox, axis=0)
bboxes = postprocess_boxes(pred_bbox, original_image, TEST_INPUT_SIZE, score_threshold)
bboxes = nms(bboxes, iou_threshold, method='nms')
for bbox in bboxes:
coor = np.array(bbox[:4], dtype=np.int32)
score = bbox[4]
class_ind = int(bbox[5])
class_name = NUM_CLASS[class_ind]
score = '%.4f' % score
xmin, ymin, xmax, ymax = list(map(str, coor))
bbox = xmin + " " + ymin + " " + xmax + " " +ymax
json_pred[gt_classes.index(class_name)].append({"confidence": str(score), "file_id": str(index), "bbox": str(bbox)})
ms = sum(times)/len(times)*1000
fps = 1000 / ms
for class_name in gt_classes:
json_pred[gt_classes.index(class_name)].sort(key=lambda x:float(x['confidence']), reverse=True)
with open(f'{ground_truth_dir_path}/{class_name}_predictions.json', 'w') as outfile:
json.dump(json_pred[gt_classes.index(class_name)], outfile)
# Calculate the AP for each class
sum_AP = 0.0
ap_dictionary = {}
# open file to store the results
with open("mAP/results.txt", 'w') as results_file:
results_file.write("# AP and precision/recall per class\n")
count_true_positives = {}
for class_index, class_name in enumerate(gt_classes):
count_true_positives[class_name] = 0
# Load predictions of that class
predictions_file = f'{ground_truth_dir_path}/{class_name}_predictions.json'
predictions_data = json.load(open(predictions_file))
# Assign predictions to ground truth objects
nd = len(predictions_data)
tp = [0] * nd # creates an array of zeros of size nd
fp = [0] * nd
for idx, prediction in enumerate(predictions_data):
file_id = prediction["file_id"]
# assign prediction to ground truth object if any
# open ground-truth with that file_id
gt_file = f'{ground_truth_dir_path}/{str(file_id)}_ground_truth.json'
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
# load prediction bounding-box
bb = [ float(x) for x in prediction["bbox"].split() ] # bounding box of prediction
for obj in ground_truth_data:
# look for a class_name match
if obj["class_name"] == class_name:
bbgt = [ float(x) for x in obj["bbox"].split() ] # bounding box of ground truth
bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap (IoU) = area of intersection / area of union
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
# assign prediction as true positive/don't care/false positive
if ovmax >= MINOVERLAP:# if ovmax > minimum overlap
if not bool(gt_match["used"]):
# true positive
tp[idx] = 1
gt_match["used"] = True
count_true_positives[class_name] += 1
# update the ".json" file
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
else:
# false positive (multiple detection)
fp[idx] = 1
else:
# false positive
fp[idx] = 1
# compute precision/recall
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
#print(tp)
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
#print(rec)
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
#print(prec)
ap, mrec, mprec = voc_ap(rec, prec)
sum_AP += ap
text = "{0:.3f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
rounded_prec = [ '%.3f' % elem for elem in prec ]
rounded_rec = [ '%.3f' % elem for elem in rec ]
# Write to results.txt
results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
print(text)
ap_dictionary[class_name] = ap
results_file.write("\n# mAP of all classes\n")
mAP = sum_AP / n_classes
text = "mAP = {:.3f}%, {:.2f} FPS".format(mAP*100, fps)
results_file.write(text + "\n")
print(text)
return mAP*100
if __name__ == '__main__':
if YOLO_FRAMEWORK == "tf": # TensorFlow detection
if YOLO_TYPE == "yolov4":
Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS
if YOLO_TYPE == "yolov3":
Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS
if YOLO_CUSTOM_WEIGHTS == False:
yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES)
load_yolo_weights(yolo, Darknet_weights) # use Darknet weights
else:
yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES)
yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") # use custom weights
elif YOLO_FRAMEWORK == "trt": # TensorRT detection
saved_model_loaded = tf.saved_model.load(f"./checkpoints/{TRAIN_MODEL_NAME}", tags=[tag_constants.SERVING])
signature_keys = list(saved_model_loaded.signatures.keys())
yolo = saved_model_loaded.signatures['serving_default']
testset = Dataset('test', TEST_INPUT_SIZE=YOLO_INPUT_SIZE)
get_mAP(yolo, testset, score_threshold=0.05, iou_threshold=0.50, TEST_INPUT_SIZE=YOLO_INPUT_SIZE)