We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
非常感谢您制作这款包,我为每个细胞类型指定了颜色,但是函数还是会按照颜色顺序而不是指定的细胞类型所对应的顺序上色
library(Seurat) library(scplotter) data(pancreas_sub) Idents(pancreas_sub) <- "SubCellType" table(Idents(pancreas_sub)) # Ductal Ngn3 low EP Ngn3 high EP Pre-endocrine # 239 81 168 150 # Beta Alpha Delta Epsilon # 177 135 18 32 cell_color <- c( "Ductal" = "#4E79A7FF", "Delta" = "#B07AA1FF", "Alpha" = "#EDC948FF", "Ngn3 low EP" = "#F28E2BFF", "Ngn3 high EP" = "#E15759FF", "Pre-endocrine" = "#76B7B2FF", "Beta" = "#59A14FFF", "Epsilon" = "#FF9DA7FF" ) CellDimPlot(pancreas_sub, group_by = "SubCellType", reduction = "UMAP", palcolor = cell_color)
可以看到颜色并不是一样对应的,当我把SubCellType指定为factor时,问题依然存在,并且不是个案,我在win和linux上均复现成功
sessionInfo() R version 4.4.1 (2024-06-14 ucrt) Platform: x86_64-w64-mingw32/x64 Running under: Windows 11 x64 (build 22631) Matrix products: default locale: [1] LC_COLLATE=English_United States.utf8 [2] LC_CTYPE=English_United States.utf8 [3] LC_MONETARY=English_United States.utf8 [4] LC_NUMERIC=C [5] LC_TIME=English_United States.utf8 time zone: Asia/Shanghai tzcode source: internal attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] ggsci_3.2.0 scplotter_0.1.0 Seurat_5.1.0 SeuratObject_5.0.2 [5] sp_2.1-4 paletteer_1.6.0 pacman_0.5.1 loaded via a namespace (and not attached): [1] cubature_2.1.1 RcppAnnoy_0.0.22 [3] splines_4.4.1 later_1.3.2 [5] prismatic_1.1.2 tibble_3.2.1 [7] polyclip_1.10-7 fastDummies_1.7.4 [9] lifecycle_1.0.4 globals_0.16.3 [11] lattice_0.22-6 MASS_7.3-61 [13] magrittr_2.0.3 plotly_4.10.4 [15] httpuv_1.6.15 sctransform_0.4.1 [17] spam_2.11-0 spatstat.sparse_3.1-0 [19] reticulate_1.39.0 cowplot_1.1.3 [21] pbapply_1.7-2 RColorBrewer_1.1-3 [23] abind_1.4-8 zlibbioc_1.50.0 [25] Rtsne_0.17 GenomicRanges_1.56.2 [27] purrr_1.0.2 ggraph_2.2.1 [29] BiocGenerics_0.50.0 tweenr_2.0.3 [31] evmix_2.12 circlize_0.4.16 [33] GenomeInfoDbData_1.2.12 IRanges_2.38.1 [35] S4Vectors_0.42.1 ggrepel_0.9.6 [37] irlba_2.3.5.1 listenv_0.9.1 [39] spatstat.utils_3.1-0 iNEXT_3.0.1 [41] MatrixModels_0.5-3 goftest_1.2-3 [43] RSpectra_0.16-2 scRepertoire_2.0.8 [45] spatstat.random_3.3-2 fitdistrplus_1.2-1 [47] parallelly_1.38.0 leiden_0.4.3.1 [49] codetools_0.2-20 DelayedArray_0.30.1 [51] xml2_1.3.6 ggforce_0.4.2 [53] tidyselect_1.2.1 shape_1.4.6.1 [55] UCSC.utils_1.0.0 farver_2.1.2 [57] viridis_0.6.5 matrixStats_1.4.1 [59] stats4_4.4.1 spatstat.explore_3.3-3 [61] jsonlite_1.8.9 tidygraph_1.3.1 [63] progressr_0.15.0 ggridges_0.5.6 [65] ggalluvial_0.12.5 survival_3.7-0 [67] tools_4.4.1 ggnewscale_0.5.0 [69] stringdist_0.9.12 ica_1.0-3 [71] Rcpp_1.0.13-1 glue_1.8.0 [73] gridExtra_2.3 SparseArray_1.4.8 [75] MatrixGenerics_1.16.0 GenomeInfoDb_1.40.1 [77] dplyr_1.1.4 withr_3.0.2 [79] fastmap_1.2.0 fansi_1.0.6 [81] SparseM_1.84-2 digest_0.6.37 [83] R6_2.5.1 mime_0.12 [85] colorspace_2.1-1 scattermore_1.2 [87] tensor_1.5 spatstat.data_3.1-2 [89] utf8_1.2.4 tidyr_1.3.1 [91] generics_0.1.3 data.table_1.16.2 [93] graphlayouts_1.2.0 httr_1.4.7 [95] htmlwidgets_1.6.4 S4Arrays_1.4.1 [97] uwot_0.2.2 pkgconfig_2.0.3 [99] gtable_0.3.6 lmtest_0.9-40 [101] SingleCellExperiment_1.26.0 XVector_0.44.0 [103] htmltools_0.5.8.1 dotCall64_1.2 [105] scales_1.3.0 Biobase_2.64.0 [107] png_0.1-8 spatstat.univar_3.0-1 [109] ggdendro_0.2.0 rstudioapi_0.17.1 [111] rjson_0.2.23 reshape2_1.4.4 [113] nlme_3.1-166 cachem_1.1.0 [115] zoo_1.8-12 GlobalOptions_0.1.2 [117] stringr_1.5.1 KernSmooth_2.23-24 [119] parallel_4.4.1 miniUI_0.1.1.1 [121] pillar_1.9.0 grid_4.4.1 [123] vctrs_0.6.5 RANN_2.6.2 [125] VGAM_1.1-12 promises_1.3.0 [127] xtable_1.8-4 cluster_2.1.6 [129] truncdist_1.0-2 cli_3.6.3 [131] compiler_4.4.1 rlang_1.1.4 [133] crayon_1.5.3 future.apply_1.11.3 [135] labeling_0.4.3 rematch2_2.1.2 [137] plyr_1.8.9 forcats_1.0.0 [139] stringi_1.8.4 viridisLite_0.4.2 [141] deldir_2.0-4 assertthat_0.2.1 [143] munsell_0.5.1 gsl_2.1-8 [145] lazyeval_0.2.2 spatstat.geom_3.3-3 [147] quantreg_5.99 Matrix_1.7-0 [149] RcppHNSW_0.6.0 patchwork_1.3.0 [151] future_1.34.0 ggplot2_3.5.1 [153] shiny_1.9.1 plotthis_0.3.5 [155] SummarizedExperiment_1.34.0 evd_2.3-7.1 [157] ROCR_1.0-11 gridtext_0.1.5 [159] igraph_2.1.1 memoise_2.0.1
The text was updated successfully, but these errors were encountered:
feat: support named palcolor and keep the order (pwwang/scplotter#12)
9b4c9c3
It should work with the latest plotthis
Try remotes::install_github("pwwang/plotthis").
remotes::install_github("pwwang/plotthis")
Sorry, something went wrong.
No branches or pull requests
非常感谢您制作这款包,我为每个细胞类型指定了颜色,但是函数还是会按照颜色顺序而不是指定的细胞类型所对应的顺序上色
可以看到颜色并不是一样对应的,当我把SubCellType指定为factor时,问题依然存在,并且不是个案,我在win和linux上均复现成功
The text was updated successfully, but these errors were encountered: