-
Notifications
You must be signed in to change notification settings - Fork 6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[ImgBot] Optimize images #6
Open
imgbot
wants to merge
1
commit into
master
Choose a base branch
from
imgbot
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
imgbot
bot
force-pushed
the
imgbot
branch
3 times, most recently
from
December 10, 2020 12:05
b7eaf91
to
e467ac0
Compare
imgbot
bot
force-pushed
the
imgbot
branch
8 times, most recently
from
December 14, 2020 05:44
1ecbf2d
to
f64edfe
Compare
imgbot
bot
force-pushed
the
imgbot
branch
2 times, most recently
from
February 8, 2021 06:43
a6761ad
to
7d4315f
Compare
imgbot
bot
force-pushed
the
imgbot
branch
4 times, most recently
from
February 21, 2021 08:11
e8ac8db
to
e0655ec
Compare
imgbot
bot
force-pushed
the
imgbot
branch
11 times, most recently
from
March 4, 2021 10:33
f8e9889
to
151ec3e
Compare
imgbot
bot
force-pushed
the
imgbot
branch
2 times, most recently
from
March 7, 2021 07:22
908b1ca
to
cdd98a7
Compare
imgbot
bot
force-pushed
the
imgbot
branch
4 times, most recently
from
March 11, 2021 05:14
bf1ece8
to
056d9b2
Compare
*Total -- 53,858.05kb -> 43,285.75kb (19.63%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png -- 25.24kb -> 9.11kb (63.89%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png -- 12.69kb -> 5.56kb (56.16%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png -- 7.91kb -> 3.48kb (55.94%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png -- 75.64kb -> 33.74kb (55.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png -- 7.08kb -> 3.45kb (51.3%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png -- 5.31kb -> 2.61kb (50.82%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png -- 5.47kb -> 2.73kb (50.14%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png -- 6.92kb -> 3.47kb (49.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png -- 39.07kb -> 19.63kb (49.76%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png -- 7.65kb -> 3.87kb (49.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png -- 6.24kb -> 3.16kb (49.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png -- 3.62kb -> 1.84kb (49.18%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png -- 3.60kb -> 1.95kb (45.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png -- 3.02kb -> 1.66kb (44.96%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png -- 5.85kb -> 3.25kb (44.49%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png -- 32.69kb -> 18.47kb (43.48%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png -- 3.03kb -> 1.73kb (42.84%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png -- 3.22kb -> 1.87kb (42.08%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png -- 216.79kb -> 126.69kb (41.56%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching@1x.png -- 55.89kb -> 32.68kb (41.53%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png -- 14.70kb -> 8.63kb (41.26%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png -- 239.64kb -> 142.08kb (40.71%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png -- 2.40kb -> 1.45kb (39.55%) /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png -- 4.23kb -> 2.63kb (37.8%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png -- 34.70kb -> 21.73kb (37.36%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png -- 1.46kb -> 0.92kb (37.22%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png -- 5.92kb -> 3.75kb (36.71%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png -- 25.88kb -> 16.38kb (36.7%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png -- 124.59kb -> 79.80kb (35.95%) /Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png -- 4.11kb -> 2.69kb (34.69%) /Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png -- 4.17kb -> 2.73kb (34.61%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png -- 22.58kb -> 14.80kb (34.47%) /Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png -- 3.45kb -> 2.27kb (34.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png -- 488.90kb -> 321.92kb (34.15%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png -- 23.58kb -> 15.60kb (33.85%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png -- 3.63kb -> 2.41kb (33.81%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png -- 118.32kb -> 79.16kb (33.09%) /Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png -- 3.04kb -> 2.09kb (31.09%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png -- 207.53kb -> 143.84kb (30.69%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/15. step - 1.png -- 125.48kb -> 87.18kb (30.52%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png -- 306.85kb -> 213.49kb (30.42%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png -- 374.49kb -> 261.79kb (30.09%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png -- 298.55kb -> 208.83kb (30.05%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png -- 497.99kb -> 348.83kb (29.95%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png -- 3.52kb -> 2.47kb (29.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png -- 3.08kb -> 2.16kb (29.82%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png -- 746.83kb -> 524.35kb (29.79%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png -- 624.24kb -> 441.60kb (29.26%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png -- 252.73kb -> 178.82kb (29.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png -- 313.58kb -> 222.46kb (29.06%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png -- 655.19kb -> 464.83kb (29.05%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png -- 465.81kb -> 330.79kb (28.99%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. document-term matric.png -- 465.81kb -> 330.79kb (28.99%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png -- 402.19kb -> 285.91kb (28.91%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png -- 267.54kb -> 190.57kb (28.77%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png -- 253.07kb -> 180.34kb (28.74%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png -- 69.64kb -> 49.66kb (28.69%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png -- 295.47kb -> 210.91kb (28.62%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png -- 677.38kb -> 483.74kb (28.59%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png -- 431.57kb -> 308.23kb (28.58%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png -- 482.89kb -> 345.33kb (28.49%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png -- 408.77kb -> 292.60kb (28.42%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png -- 621.05kb -> 444.78kb (28.38%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png -- 14.23kb -> 10.21kb (28.25%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png -- 166.51kb -> 119.74kb (28.09%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png -- 459.65kb -> 332.78kb (27.6%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png -- 593.49kb -> 429.75kb (27.59%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png -- 370.33kb -> 268.45kb (27.51%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png -- 135.98kb -> 98.78kb (27.36%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png -- 520.15kb -> 378.19kb (27.29%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png -- 243.23kb -> 176.93kb (27.26%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png -- 66.56kb -> 48.47kb (27.19%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png -- 151.92kb -> 110.76kb (27.1%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN@0.5x.png -- 15.81kb -> 11.55kb (26.94%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png -- 355.89kb -> 260.58kb (26.78%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png -- 311.37kb -> 228.01kb (26.77%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/11. step - 5.png -- 166.55kb -> 122.01kb (26.74%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png -- 297.62kb -> 218.06kb (26.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png -- 296.62kb -> 217.34kb (26.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png -- 62.00kb -> 45.53kb (26.56%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png -- 423.16kb -> 310.97kb (26.51%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png -- 870.01kb -> 639.92kb (26.45%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png -- 26.67kb -> 19.64kb (26.37%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png -- 23.42kb -> 17.36kb (25.87%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/9. step - 3.png -- 251.84kb -> 186.80kb (25.83%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png -- 241.22kb -> 179.17kb (25.73%) /Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png -- 2.62kb -> 1.95kb (25.62%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png -- 43.40kb -> 32.34kb (25.49%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png -- 301.77kb -> 224.86kb (25.49%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/10. step - 4.png -- 280.26kb -> 208.86kb (25.48%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/8. step - 2.png -- 224.99kb -> 167.68kb (25.47%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/12. step - 6.png -- 197.75kb -> 147.80kb (25.26%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png -- 31.97kb -> 23.90kb (25.26%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png -- 8.29kb -> 6.20kb (25.22%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png -- 65.62kb -> 49.11kb (25.15%) /Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png -- 2.91kb -> 2.18kb (25.07%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png -- 65.62kb -> 49.25kb (24.94%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png -- 23.15kb -> 17.38kb (24.93%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png -- 12.13kb -> 9.11kb (24.85%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png -- 664.15kb -> 500.93kb (24.58%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/22. step - 1.png -- 337.22kb -> 254.78kb (24.45%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png -- 245.76kb -> 185.69kb (24.44%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/14. step - 8.png -- 205.73kb -> 155.60kb (24.37%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png -- 438.21kb -> 331.56kb (24.34%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png -- 35.03kb -> 26.54kb (24.26%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png -- 214.96kb -> 163.13kb (24.11%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png -- 212.00kb -> 160.96kb (24.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png -- 5.47kb -> 4.16kb (23.94%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png -- 9.88kb -> 7.52kb (23.88%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png -- 207.10kb -> 157.83kb (23.79%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png -- 284.08kb -> 216.50kb (23.79%) /Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png -- 2.37kb -> 1.80kb (23.74%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/13. step - 7.png -- 189.13kb -> 144.68kb (23.5%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/7. step - 1.png -- 154.82kb -> 118.85kb (23.23%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png -- 338.60kb -> 260.85kb (22.96%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png -- 4.09kb -> 3.15kb (22.96%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png -- 45.31kb -> 34.95kb (22.87%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png -- 484.46kb -> 373.73kb (22.86%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png -- 608.32kb -> 469.48kb (22.82%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png -- 242.75kb -> 187.35kb (22.82%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png -- 3.79kb -> 2.92kb (22.82%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png -- 416.13kb -> 321.70kb (22.69%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png -- 306.69kb -> 237.71kb (22.49%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png -- 5.59kb -> 4.34kb (22.3%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png -- 17.84kb -> 13.87kb (22.28%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png -- 355.30kb -> 276.24kb (22.25%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png -- 248.33kb -> 193.12kb (22.23%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/27. step - 2.png -- 86.47kb -> 67.32kb (22.15%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/26. step -1 .png -- 48.08kb -> 37.43kb (22.15%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/23. step - 2.png -- 193.00kb -> 150.29kb (22.13%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png -- 210.69kb -> 164.08kb (22.12%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png -- 3.59kb -> 2.80kb (22.01%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png -- 497.00kb -> 387.69kb (21.99%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png -- 3.43kb -> 2.67kb (21.99%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/16. step - 2.png -- 250.37kb -> 195.32kb (21.99%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/29. step - 4.png -- 106.88kb -> 83.50kb (21.88%) /Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png -- 2.79kb -> 2.18kb (21.8%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png -- 483.12kb -> 378.03kb (21.75%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png -- 447.99kb -> 350.63kb (21.73%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png -- 27.05kb -> 21.17kb (21.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png -- 382.98kb -> 299.78kb (21.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png -- 334.19kb -> 261.74kb (21.68%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png -- 456.51kb -> 358.16kb (21.54%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png -- 7.47kb -> 5.86kb (21.54%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/30. step - 5.png -- 200.61kb -> 157.60kb (21.44%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png -- 3.79kb -> 2.98kb (21.44%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png -- 7.78kb -> 6.12kb (21.41%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png -- 3.89kb -> 3.06kb (21.37%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png -- 2.62kb -> 2.06kb (21.36%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png -- 5.41kb -> 4.26kb (21.25%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png -- 6.93kb -> 5.46kb (21.12%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/24. step - 3.png -- 345.24kb -> 272.33kb (21.12%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png -- 6.92kb -> 5.46kb (21.11%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png -- 525.49kb -> 415.01kb (21.02%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png -- 7.41kb -> 5.87kb (20.79%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png -- 7.37kb -> 5.84kb (20.78%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/28. step - 3.png -- 96.38kb -> 76.42kb (20.72%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png -- 4.77kb -> 3.78kb (20.71%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/25. step - 4.png -- 400.65kb -> 317.82kb (20.67%) /Chapter-wise code/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%) /Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png -- 66.39kb -> 52.70kb (20.61%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png -- 7.39kb -> 5.87kb (20.59%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png -- 7.47kb -> 5.93kb (20.56%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png -- 4.88kb -> 3.88kb (20.5%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png -- 5.21kb -> 4.15kb (20.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png -- 6.51kb -> 5.18kb (20.38%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png -- 118.75kb -> 94.60kb (20.34%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png -- 4.40kb -> 3.51kb (20.23%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/20. attention formula.png -- 255.82kb -> 204.08kb (20.22%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png -- 7.27kb -> 5.80kb (20.19%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png -- 2.28kb -> 1.82kb (20.09%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png -- 3.65kb -> 2.92kb (20.07%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png -- 5.29kb -> 4.23kb (20.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png -- 5.00kb -> 4.00kb (20.02%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png -- 3.60kb -> 2.88kb (19.98%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png -- 2.19kb -> 1.75kb (19.96%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png -- 109.80kb -> 87.89kb (19.95%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png -- 5.14kb -> 4.12kb (19.93%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png -- 171.40kb -> 137.32kb (19.89%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png -- 117.12kb -> 93.87kb (19.85%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png -- 517.77kb -> 415.00kb (19.85%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png -- 3.71kb -> 2.97kb (19.77%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png -- 4.40kb -> 3.53kb (19.76%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/18. step - 4.png -- 255.88kb -> 205.37kb (19.74%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png -- 145.59kb -> 116.98kb (19.65%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png -- 4.65kb -> 3.74kb (19.64%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png -- 3.46kb -> 2.78kb (19.6%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png -- 3.96kb -> 3.19kb (19.53%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png -- 3.40kb -> 2.74kb (19.49%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png -- 115.76kb -> 93.28kb (19.42%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png -- 4.22kb -> 3.40kb (19.39%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png -- 3.24kb -> 2.61kb (19.37%) /Chapter-wise notes/Ch_1_Linear_algebra/images/span.png -- 2.41kb -> 1.94kb (19.36%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png -- 1.86kb -> 1.50kb (19.31%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png -- 4.49kb -> 3.63kb (19.26%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png -- 5.01kb -> 4.05kb (19.22%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png -- 576.54kb -> 465.75kb (19.22%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png -- 4.50kb -> 3.63kb (19.17%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3 - 1.png -- 226.23kb -> 182.91kb (19.15%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png -- 5.00kb -> 4.04kb (19.14%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png -- 4.72kb -> 3.82kb (19.11%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png -- 3.68kb -> 2.98kb (19.01%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png -- 4.84kb -> 3.92kb (18.98%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png -- 9.38kb -> 7.61kb (18.84%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3.png -- 254.18kb -> 206.39kb (18.8%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png -- 379.97kb -> 308.89kb (18.71%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png -- 2.28kb -> 1.85kb (18.69%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png -- 4.45kb -> 3.62kb (18.63%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png -- 4.98kb -> 4.05kb (18.62%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png -- 2.15kb -> 1.75kb (18.6%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png -- 4.72kb -> 3.85kb (18.55%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png -- 5.20kb -> 4.24kb (18.52%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png -- 148.35kb -> 120.91kb (18.5%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png -- 326.48kb -> 266.17kb (18.47%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/21. causal attention overview.png -- 111.98kb -> 91.54kb (18.25%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png -- 5.39kb -> 4.41kb (18.24%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png -- 2.96kb -> 2.42kb (18.17%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png -- 4.34kb -> 3.56kb (18.11%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png -- 211.50kb -> 173.58kb (17.93%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png -- 4.71kb -> 3.86kb (17.93%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png -- 4.60kb -> 3.78kb (17.91%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png -- 2.56kb -> 2.10kb (17.8%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png -- 3.06kb -> 2.52kb (17.71%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png -- 2.32kb -> 1.91kb (17.68%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png -- 2.77kb -> 2.28kb (17.64%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png -- 9.04kb -> 7.45kb (17.61%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png -- 2.44kb -> 2.01kb (17.51%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png -- 3.71kb -> 3.06kb (17.4%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png -- 3.47kb -> 2.87kb (17.22%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png -- 3.39kb -> 2.81kb (17.08%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png -- 408.23kb -> 338.55kb (17.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png -- 3.26kb -> 2.70kb (17.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png -- 4.94kb -> 4.10kb (16.96%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png -- 25.94kb -> 21.55kb (16.9%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png -- 4.34kb -> 3.61kb (16.87%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png -- 4.45kb -> 3.70kb (16.86%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png -- 4.21kb -> 3.50kb (16.78%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png -- 2.24kb -> 1.86kb (16.75%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png -- 4.13kb -> 3.44kb (16.74%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png -- 3.36kb -> 2.80kb (16.73%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png -- 181.07kb -> 150.80kb (16.71%) /Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png -- 2.28kb -> 1.90kb (16.69%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png -- 4.97kb -> 4.14kb (16.68%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png -- 334.82kb -> 279.04kb (16.66%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png -- 48.38kb -> 40.32kb (16.65%) /Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png -- 1.85kb -> 1.54kb (16.6%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png -- 2.54kb -> 2.12kb (16.58%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png -- 3.18kb -> 2.66kb (16.57%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png -- 2.48kb -> 2.07kb (16.53%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png -- 9.56kb -> 7.98kb (16.47%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png -- 552.26kb -> 461.51kb (16.43%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png -- 2.74kb -> 2.29kb (16.41%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png -- 4.54kb -> 3.80kb (16.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png -- 1.89kb -> 1.58kb (16.36%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png -- 5.04kb -> 4.22kb (16.34%) /Chapter-wise code/Code - PyTorch/images/install_pytorch.png -- 23.96kb -> 20.05kb (16.3%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png -- 3.20kb -> 2.68kb (16.27%) /Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png -- 1.76kb -> 1.47kb (16.27%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png -- 2.55kb -> 2.14kb (16.2%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png -- 9.18kb -> 7.69kb (16.19%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/19. step - 5.png -- 238.57kb -> 199.97kb (16.18%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png -- 3.16kb -> 2.65kb (16.09%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png -- 3.03kb -> 2.54kb (16.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png -- 2.16kb -> 1.81kb (15.99%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png -- 233.07kb -> 195.81kb (15.99%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png -- 3.67kb -> 3.08kb (15.98%) /Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/31. multi-head attention.png -- 345.75kb -> 290.57kb (15.96%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png -- 7.17kb -> 6.02kb (15.96%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png -- 1.88kb -> 1.58kb (15.93%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png -- 2.91kb -> 2.45kb (15.86%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png -- 3.12kb -> 2.62kb (15.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png -- 2.95kb -> 2.48kb (15.78%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png -- 2.47kb -> 2.08kb (15.78%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png -- 83.39kb -> 70.27kb (15.74%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png -- 3.90kb -> 3.29kb (15.71%) /Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png -- 3.23kb -> 2.72kb (15.68%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png -- 15.39kb -> 12.98kb (15.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png -- 65.05kb -> 54.88kb (15.63%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png -- 305.21kb -> 257.75kb (15.55%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png -- 2.38kb -> 2.01kb (15.53%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png -- 2.82kb -> 2.39kb (15.34%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png -- 4.47kb -> 3.78kb (15.33%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png -- 3.02kb -> 2.56kb (15.16%) /Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png -- 1.72kb -> 1.46kb (15.12%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png -- 685.37kb -> 582.14kb (15.06%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png -- 60.06kb -> 51.08kb (14.95%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png -- 2.25kb -> 1.92kb (14.88%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png -- 2.00kb -> 1.70kb (14.88%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png -- 2.77kb -> 2.36kb (14.78%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png -- 27.69kb -> 23.60kb (14.77%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png -- 3.28kb -> 2.80kb (14.74%) /Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png -- 28.01kb -> 23.91kb (14.65%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png -- 38.01kb -> 32.48kb (14.54%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png -- 1.91kb -> 1.63kb (14.53%) /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png -- 1.73kb -> 1.48kb (14.42%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg -- 82.79kb -> 70.88kb (14.39%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png -- 187.09kb -> 160.23kb (14.36%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png -- 65.94kb -> 56.48kb (14.35%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png -- 4.67kb -> 4.01kb (14.29%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png -- 2.47kb -> 2.12kb (14.24%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png -- 137.33kb -> 117.78kb (14.24%) /Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png -- 292.32kb -> 250.87kb (14.18%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png -- 2.24kb -> 1.92kb (14.17%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png -- 16.95kb -> 14.55kb (14.14%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png -- 3.18kb -> 2.73kb (14.12%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png -- 1.78kb -> 1.53kb (14.08%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png -- 2.59kb -> 2.23kb (14.03%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png -- 3.30kb -> 2.84kb (14.01%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png -- 1.85kb -> 1.59kb (14.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png -- 3.06kb -> 2.63kb (14%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png -- 60.36kb -> 51.95kb (13.93%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png -- 3.48kb -> 3.00kb (13.92%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png -- 192.15kb -> 165.71kb (13.76%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png -- 2.22kb -> 1.92kb (13.7%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png -- 1.98kb -> 1.71kb (13.69%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png -- 1.60kb -> 1.38kb (13.66%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png -- 399.13kb -> 344.96kb (13.57%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png -- 2.41kb -> 2.09kb (13.35%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png -- 2.55kb -> 2.21kb (13.31%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png -- 16.32kb -> 14.16kb (13.25%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png -- 1.80kb -> 1.56kb (13.17%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png -- 2.26kb -> 1.97kb (13.03%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png -- 2.67kb -> 2.33kb (13.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png -- 3.66kb -> 3.18kb (12.98%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png -- 61.52kb -> 53.54kb (12.98%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png -- 1.66kb -> 1.44kb (12.85%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png -- 1.63kb -> 1.42kb (12.77%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png -- 2.59kb -> 2.26kb (12.75%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png -- 204.76kb -> 178.87kb (12.64%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png -- 2.07kb -> 1.81kb (12.57%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png -- 20.91kb -> 18.28kb (12.57%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png -- 1.51kb -> 1.33kb (12.39%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png -- 1.57kb -> 1.38kb (12.35%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png -- 24.69kb -> 21.67kb (12.24%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png -- 3.19kb -> 2.81kb (12.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png -- 2.80kb -> 2.46kb (11.93%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png -- 25.38kb -> 22.35kb (11.92%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png -- 38.47kb -> 33.89kb (11.91%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png -- 24.93kb -> 21.97kb (11.88%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png -- 1.65kb -> 1.46kb (11.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png -- 2.30kb -> 2.03kb (11.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png -- 108.77kb -> 96.09kb (11.65%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png -- 2.60kb -> 2.30kb (11.6%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png -- 22.96kb -> 20.30kb (11.6%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png -- 4.28kb -> 3.79kb (11.42%) /Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png -- 1.47kb -> 1.30kb (11.33%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png -- 1.38kb -> 1.22kb (11.27%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png -- 18.88kb -> 16.77kb (11.19%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png -- 2.97kb -> 2.64kb (11.07%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png -- 43.84kb -> 38.99kb (11.07%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png -- 2.56kb -> 2.28kb (11.05%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png -- 16.53kb -> 14.70kb (11.04%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png -- 1.38kb -> 1.23kb (10.93%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png -- 35.95kb -> 32.02kb (10.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png -- 31.98kb -> 28.52kb (10.84%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png -- 9.85kb -> 8.81kb (10.5%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png -- 1.37kb -> 1.23kb (10.47%) /Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png -- 38.68kb -> 34.67kb (10.39%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png -- 10.17kb -> 9.15kb (9.99%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png -- 2.03kb -> 1.83kb (9.91%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png -- 1.30kb -> 1.18kb (9.36%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png -- 30.35kb -> 27.53kb (9.3%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png -- 1.25kb -> 1.14kb (9.18%) /Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png -- 1.50kb -> 1.36kb (9.14%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png -- 1.45kb -> 1.32kb (9.1%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png -- 2.28kb -> 2.07kb (9.05%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png -- 1.63kb -> 1.49kb (8.97%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png -- 1.24kb -> 1.13kb (8.77%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png -- 46.35kb -> 42.38kb (8.56%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png -- 23.83kb -> 21.81kb (8.46%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png -- 66.37kb -> 60.77kb (8.44%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png -- 1.44kb -> 1.32kb (8.36%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png -- 11.52kb -> 10.56kb (8.3%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png -- 1.65kb -> 1.51kb (8.3%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png -- 1.32kb -> 1.22kb (7.98%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png -- 15.64kb -> 14.40kb (7.92%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png -- 15.37kb -> 14.16kb (7.85%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png -- 2.70kb -> 2.49kb (7.77%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png -- 1.69kb -> 1.56kb (7.75%) /Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png -- 14.12kb -> 13.04kb (7.63%) /Deep Learning Nanodegree Certificate/images/final_completion_certificate.png -- 142.19kb -> 131.39kb (7.6%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png -- 1.22kb -> 1.13kb (7.38%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png -- 27.74kb -> 25.72kb (7.29%) /Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png -- 2.24kb -> 2.08kb (7.28%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png -- 145.92kb -> 135.40kb (7.21%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png -- 15.15kb -> 14.07kb (7.16%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png -- 22.28kb -> 20.69kb (7.16%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png -- 85.44kb -> 79.39kb (7.08%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png -- 15.29kb -> 14.22kb (7.03%) /images/deep-learning-book-goodfellow-cover.jpg -- 181.02kb -> 168.33kb (7.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png -- 7.54kb -> 7.03kb (6.82%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png -- 101.06kb -> 94.21kb (6.78%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png -- 34.16kb -> 31.85kb (6.77%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png -- 97.64kb -> 91.08kb (6.72%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png -- 6.02kb -> 5.62kb (6.6%) /Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png -- 30.23kb -> 28.27kb (6.48%) /Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png -- 2.11kb -> 1.98kb (6.39%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png -- 7.20kb -> 6.75kb (6.27%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png -- 20.69kb -> 19.41kb (6.15%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png -- 4.16kb -> 3.91kb (6.1%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png -- 5.90kb -> 5.56kb (5.74%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png -- 6.07kb -> 5.73kb (5.71%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png -- 46.17kb -> 43.57kb (5.65%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png -- 1.69kb -> 1.60kb (5.44%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png -- 53.02kb -> 50.24kb (5.25%) /Chapter-wise code/Code - PyTorch/images/activating_gpu.png -- 49.22kb -> 46.67kb (5.19%) /Chapter-wise code/images/ben_passmore.jpg -- 318.59kb -> 302.16kb (5.16%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png -- 9.40kb -> 8.92kb (5.11%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png -- 117.26kb -> 111.39kb (5.01%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png -- 10.75kb -> 10.22kb (4.96%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png -- 1.96kb -> 1.86kb (4.93%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png -- 6.12kb -> 5.83kb (4.77%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png -- 13.94kb -> 13.31kb (4.54%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png -- 24.69kb -> 23.57kb (4.53%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png -- 4.56kb -> 4.36kb (4.45%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png -- 5.63kb -> 5.38kb (4.41%) /Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png -- 41.55kb -> 39.72kb (4.4%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png -- 8.92kb -> 8.53kb (4.38%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png -- 19.07kb -> 18.29kb (4.13%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png -- 21.76kb -> 20.91kb (3.9%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png -- 12.73kb -> 12.23kb (3.86%) /Chapter-wise code/images/octopus.jpg -- 90.07kb -> 86.62kb (3.83%) /Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png -- 7.81kb -> 7.51kb (3.81%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png -- 9.02kb -> 8.70kb (3.49%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png -- 6.69kb -> 6.46kb (3.47%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png -- 4.05kb -> 3.92kb (3.44%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png -- 11.06kb -> 10.68kb (3.37%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png -- 123.91kb -> 119.80kb (3.32%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png -- 57.26kb -> 55.37kb (3.31%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png -- 62.86kb -> 60.78kb (3.3%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png -- 1.36kb -> 1.32kb (3.29%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png -- 13.14kb -> 12.71kb (3.21%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png -- 27.79kb -> 26.90kb (3.2%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png -- 33.13kb -> 32.11kb (3.07%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png -- 53.90kb -> 52.34kb (2.9%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png -- 85.16kb -> 82.71kb (2.88%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png -- 12.58kb -> 12.22kb (2.84%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png -- 105.44kb -> 102.46kb (2.83%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png -- 3.50kb -> 3.41kb (2.81%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png -- 71.64kb -> 69.68kb (2.74%) /Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png -- 5.24kb -> 5.11kb (2.48%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png -- 5.40kb -> 5.27kb (2.39%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png -- 21.34kb -> 20.84kb (2.33%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png -- 1.14kb -> 1.12kb (1.8%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png -- 18.18kb -> 17.88kb (1.66%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png -- 6.30kb -> 6.20kb (1.58%) /Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png -- 1.69kb -> 1.66kb (1.5%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png -- 90.91kb -> 89.72kb (1.31%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png -- 64.44kb -> 63.63kb (1.27%) /Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png -- 4.47kb -> 4.42kb (1.2%) /Chapter-wise code/images/hockney.jpg -- 18.31kb -> 18.11kb (1.1%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png -- 35.56kb -> 35.20kb (1.01%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png -- 19.66kb -> 19.50kb (0.82%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png -- 64.39kb -> 63.95kb (0.68%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png -- 50.73kb -> 50.39kb (0.67%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png -- 155.61kb -> 154.69kb (0.59%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%) /Chapter-wise code/images/target.png -- 366.91kb -> 365.87kb (0.28%) /Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png -- 9.33kb -> 9.30kb (0.28%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png -- 527.83kb -> 526.52kb (0.25%) /Chapter-wise code/images/target_octopus.png -- 233.01kb -> 232.43kb (0.25%) /Chapter-wise code/images/style_purva.png -- 349.62kb -> 348.80kb (0.23%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png -- 504.69kb -> 503.56kb (0.23%) /Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png -- 305.47kb -> 305.06kb (0.13%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png -- 446.70kb -> 446.22kb (0.11%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png -- 121.01kb -> 120.89kb (0.1%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png -- 238.78kb -> 238.54kb (0.1%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png -- 108.09kb -> 107.99kb (0.09%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png -- 94.24kb -> 94.16kb (0.09%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png -- 129.56kb -> 129.45kb (0.08%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png -- 120.82kb -> 120.73kb (0.07%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png -- 76.29kb -> 76.24kb (0.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png -- 85.23kb -> 85.18kb (0.06%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png -- 66.65kb -> 66.61kb (0.06%) /Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png -- 199.24kb -> 199.13kb (0.06%) /Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png -- 118.47kb -> 118.41kb (0.05%) /Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png -- 72.92kb -> 72.89kb (0.05%) /Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png -- 111.66kb -> 111.62kb (0.04%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png -- 98.54kb -> 98.51kb (0.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png -- 260.12kb -> 260.03kb (0.03%) /Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png -- 59.60kb -> 59.58kb (0.03%) /Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png -- 175.95kb -> 175.90kb (0.03%) /Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png -- 101.60kb -> 101.57kb (0.03%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png -- 141.95kb -> 141.92kb (0.02%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png -- 92.04kb -> 92.02kb (0.01%) /Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png -- 194.98kb -> 194.96kb (0.01%) /Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png -- 97.61kb -> 97.61kb (0%) Signed-off-by: ImgBotApp <ImgBotHelp@gmail.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Beep boop. Your images are optimized!
Your image file size has been reduced by 20% 🎉
Details
Black Lives Matter | 💰 donate | 🎓 learn | ✍🏾 sign
📝 docs | repo | 🙋🏾 issues | 🏅 swag | 🏪 marketplace