Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ImgBot] Optimize images #6

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open

[ImgBot] Optimize images #6

wants to merge 1 commit into from

Conversation

imgbot[bot]
Copy link

@imgbot imgbot bot commented Jan 30, 2020

Beep boop. Your images are optimized!

Your image file size has been reduced by 20% 🎉

Details
File Before After Percent reduction
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png 25.24kb 9.11kb 63.89%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png 12.69kb 5.56kb 56.16%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png 7.91kb 3.48kb 55.94%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png 75.64kb 33.74kb 55.39%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png 7.08kb 3.45kb 51.30%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png 5.31kb 2.61kb 50.82%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png 5.47kb 2.73kb 50.14%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png 6.92kb 3.47kb 49.91%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png 39.07kb 19.63kb 49.76%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png 7.65kb 3.87kb 49.39%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png 6.24kb 3.16kb 49.39%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png 3.62kb 1.84kb 49.18%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png 3.60kb 1.95kb 45.91%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png 3.02kb 1.66kb 44.96%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png 5.85kb 3.25kb 44.49%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png 32.69kb 18.47kb 43.48%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png 3.03kb 1.73kb 42.84%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png 3.22kb 1.87kb 42.08%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png 216.79kb 126.69kb 41.56%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching@1x.png 55.89kb 32.68kb 41.53%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png 14.70kb 8.63kb 41.26%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png 239.64kb 142.08kb 40.71%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png 2.40kb 1.45kb 39.55%
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png 4.23kb 2.63kb 37.80%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png 139.58kb 87.27kb 37.48%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png 139.58kb 87.27kb 37.48%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png 34.70kb 21.73kb 37.36%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png 151.93kb 95.25kb 37.31%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png 151.93kb 95.25kb 37.31%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png 1.46kb 0.92kb 37.22%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png 104.30kb 65.72kb 36.99%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png 104.30kb 65.72kb 36.99%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png 5.92kb 3.75kb 36.71%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png 25.88kb 16.38kb 36.70%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png 124.59kb 79.80kb 35.95%
/Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png 4.11kb 2.69kb 34.69%
/Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png 4.17kb 2.73kb 34.61%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png 22.58kb 14.80kb 34.47%
/Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png 3.45kb 2.27kb 34.25%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png 488.90kb 321.92kb 34.15%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png 23.58kb 15.60kb 33.85%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png 3.63kb 2.41kb 33.81%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png 118.32kb 79.16kb 33.09%
/Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png 3.04kb 2.09kb 31.09%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png 207.53kb 143.84kb 30.69%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/15. step - 1.png 125.48kb 87.18kb 30.52%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png 306.85kb 213.49kb 30.42%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png 374.49kb 261.79kb 30.09%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png 298.55kb 208.83kb 30.05%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png 497.99kb 348.83kb 29.95%
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png 3.52kb 2.47kb 29.92%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png 3.08kb 2.16kb 29.82%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png 746.83kb 524.35kb 29.79%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png 624.24kb 441.60kb 29.26%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png 252.73kb 178.82kb 29.25%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png 313.58kb 222.46kb 29.06%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png 655.19kb 464.83kb 29.05%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png 465.81kb 330.79kb 28.99%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. document-term matric.png 465.81kb 330.79kb 28.99%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png 402.19kb 285.91kb 28.91%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png 267.54kb 190.57kb 28.77%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png 253.07kb 180.34kb 28.74%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png 69.64kb 49.66kb 28.69%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png 295.47kb 210.91kb 28.62%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png 677.38kb 483.74kb 28.59%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png 431.57kb 308.23kb 28.58%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png 482.89kb 345.33kb 28.49%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png 408.77kb 292.60kb 28.42%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png 621.05kb 444.78kb 28.38%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png 14.23kb 10.21kb 28.25%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png 166.51kb 119.74kb 28.09%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png 459.65kb 332.78kb 27.60%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png 593.49kb 429.75kb 27.59%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png 370.33kb 268.45kb 27.51%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png 135.98kb 98.78kb 27.36%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png 520.15kb 378.19kb 27.29%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png 243.23kb 176.93kb 27.26%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png 66.56kb 48.47kb 27.19%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png 151.92kb 110.76kb 27.10%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN@0.5x.png 15.81kb 11.55kb 26.94%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png 355.89kb 260.58kb 26.78%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png 311.37kb 228.01kb 26.77%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/11. step - 5.png 166.55kb 122.01kb 26.74%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png 297.62kb 218.06kb 26.73%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png 296.62kb 217.34kb 26.73%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png 62.00kb 45.53kb 26.56%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png 423.16kb 310.97kb 26.51%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png 870.01kb 639.92kb 26.45%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png 26.67kb 19.64kb 26.37%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png 184.52kb 136.44kb 26.06%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png 184.52kb 136.44kb 26.06%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png 23.42kb 17.36kb 25.87%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/9. step - 3.png 251.84kb 186.80kb 25.83%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png 241.22kb 179.17kb 25.73%
/Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png 2.62kb 1.95kb 25.62%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png 43.40kb 32.34kb 25.49%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png 301.77kb 224.86kb 25.49%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/10. step - 4.png 280.26kb 208.86kb 25.48%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/8. step - 2.png 224.99kb 167.68kb 25.47%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/12. step - 6.png 197.75kb 147.80kb 25.26%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png 31.97kb 23.90kb 25.26%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png 8.29kb 6.20kb 25.22%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png 65.62kb 49.11kb 25.15%
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png 2.91kb 2.18kb 25.07%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png 65.62kb 49.25kb 24.94%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png 23.15kb 17.38kb 24.93%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png 12.13kb 9.11kb 24.85%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png 664.15kb 500.93kb 24.58%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/22. step - 1.png 337.22kb 254.78kb 24.45%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png 245.76kb 185.69kb 24.44%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/14. step - 8.png 205.73kb 155.60kb 24.37%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png 438.21kb 331.56kb 24.34%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png 35.03kb 26.54kb 24.26%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png 214.96kb 163.13kb 24.11%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png 212.00kb 160.96kb 24.07%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png 5.47kb 4.16kb 23.94%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png 9.88kb 7.52kb 23.88%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png 207.10kb 157.83kb 23.79%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png 284.08kb 216.50kb 23.79%
/Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png 2.37kb 1.80kb 23.74%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/13. step - 7.png 189.13kb 144.68kb 23.50%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/7. step - 1.png 154.82kb 118.85kb 23.23%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png 338.60kb 260.85kb 22.96%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png 4.09kb 3.15kb 22.96%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png 45.31kb 34.95kb 22.87%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png 484.46kb 373.73kb 22.86%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png 608.32kb 469.48kb 22.82%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png 242.75kb 187.35kb 22.82%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png 3.79kb 2.92kb 22.82%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png 33.53kb 25.91kb 22.73%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png 33.53kb 25.91kb 22.73%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png 416.13kb 321.70kb 22.69%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png 306.69kb 237.71kb 22.49%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png 5.59kb 4.34kb 22.30%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png 17.84kb 13.87kb 22.28%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png 355.30kb 276.24kb 22.25%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png 248.33kb 193.12kb 22.23%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/27. step - 2.png 86.47kb 67.32kb 22.15%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/26. step -1 .png 48.08kb 37.43kb 22.15%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/23. step - 2.png 193.00kb 150.29kb 22.13%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png 210.69kb 164.08kb 22.12%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png 3.59kb 2.80kb 22.01%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png 497.00kb 387.69kb 21.99%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png 3.43kb 2.67kb 21.99%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/16. step - 2.png 250.37kb 195.32kb 21.99%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/29. step - 4.png 106.88kb 83.50kb 21.88%
/Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png 2.79kb 2.18kb 21.80%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png 483.12kb 378.03kb 21.75%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png 447.99kb 350.63kb 21.73%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png 27.05kb 21.17kb 21.73%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png 382.98kb 299.78kb 21.73%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png 334.19kb 261.74kb 21.68%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png 456.51kb 358.16kb 21.54%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png 7.47kb 5.86kb 21.54%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/30. step - 5.png 200.61kb 157.60kb 21.44%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png 3.79kb 2.98kb 21.44%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png 7.78kb 6.12kb 21.41%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png 3.89kb 3.06kb 21.37%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png 2.62kb 2.06kb 21.36%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png 5.41kb 4.26kb 21.25%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png 6.93kb 5.46kb 21.12%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/24. step - 3.png 345.24kb 272.33kb 21.12%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png 6.92kb 5.46kb 21.11%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png 525.49kb 415.01kb 21.02%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png 114.79kb 90.90kb 20.82%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png 114.79kb 90.90kb 20.82%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png 7.41kb 5.87kb 20.79%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png 7.37kb 5.84kb 20.78%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png 371.97kb 294.67kb 20.78%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png 371.97kb 294.67kb 20.78%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/28. step - 3.png 96.38kb 76.42kb 20.72%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png 4.77kb 3.78kb 20.71%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png 275.48kb 218.42kb 20.71%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png 275.48kb 218.42kb 20.71%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/25. step - 4.png 400.65kb 317.82kb 20.67%
/Chapter-wise code/logo/Pytorch_logo.png 19.23kb 15.26kb 20.64%
/Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png 19.23kb 15.26kb 20.64%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png 66.39kb 52.70kb 20.61%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png 7.39kb 5.87kb 20.59%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png 7.47kb 5.93kb 20.56%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png 4.88kb 3.88kb 20.50%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png 5.21kb 4.15kb 20.39%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png 6.51kb 5.18kb 20.38%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png 118.75kb 94.60kb 20.34%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png 4.40kb 3.51kb 20.23%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/20. attention formula.png 255.82kb 204.08kb 20.22%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png 7.27kb 5.80kb 20.19%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png 2.28kb 1.82kb 20.09%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png 3.65kb 2.92kb 20.07%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png 5.29kb 4.23kb 20.07%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png 5.00kb 4.00kb 20.02%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png 3.60kb 2.88kb 19.98%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png 2.19kb 1.75kb 19.96%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png 109.80kb 87.89kb 19.95%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png 5.14kb 4.12kb 19.93%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png 171.40kb 137.32kb 19.89%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png 117.12kb 93.87kb 19.85%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png 517.77kb 415.00kb 19.85%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png 3.71kb 2.97kb 19.77%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png 4.40kb 3.53kb 19.76%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/18. step - 4.png 255.88kb 205.37kb 19.74%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png 145.59kb 116.98kb 19.65%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png 4.65kb 3.74kb 19.64%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png 3.46kb 2.78kb 19.60%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png 3.96kb 3.19kb 19.53%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png 3.40kb 2.74kb 19.49%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png 115.76kb 93.28kb 19.42%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png 4.22kb 3.40kb 19.39%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png 3.24kb 2.61kb 19.37%
/Chapter-wise notes/Ch_1_Linear_algebra/images/span.png 2.41kb 1.94kb 19.36%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png 1.86kb 1.50kb 19.31%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png 4.49kb 3.63kb 19.26%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png 5.01kb 4.05kb 19.22%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png 576.54kb 465.75kb 19.22%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png 4.50kb 3.63kb 19.17%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3 - 1.png 226.23kb 182.91kb 19.15%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png 5.00kb 4.04kb 19.14%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png 4.72kb 3.82kb 19.11%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png 3.68kb 2.98kb 19.01%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png 4.84kb 3.92kb 18.98%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png 9.38kb 7.61kb 18.84%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3.png 254.18kb 206.39kb 18.80%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png 379.97kb 308.89kb 18.71%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png 2.28kb 1.85kb 18.69%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png 4.45kb 3.62kb 18.63%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png 4.98kb 4.05kb 18.62%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png 2.15kb 1.75kb 18.60%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png 4.72kb 3.85kb 18.55%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png 5.20kb 4.24kb 18.52%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png 148.35kb 120.91kb 18.50%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png 326.48kb 266.17kb 18.47%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/21. causal attention overview.png 111.98kb 91.54kb 18.25%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png 5.39kb 4.41kb 18.24%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png 2.96kb 2.42kb 18.17%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png 4.34kb 3.56kb 18.11%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png 211.50kb 173.58kb 17.93%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png 4.71kb 3.86kb 17.93%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png 4.60kb 3.78kb 17.91%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png 2.56kb 2.10kb 17.80%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png 3.06kb 2.52kb 17.71%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png 2.32kb 1.91kb 17.68%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png 2.77kb 2.28kb 17.64%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png 9.04kb 7.45kb 17.61%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png 2.44kb 2.01kb 17.51%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png 3.71kb 3.06kb 17.40%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png 3.47kb 2.87kb 17.22%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png 3.39kb 2.81kb 17.08%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png 408.23kb 338.55kb 17.07%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png 3.26kb 2.70kb 17.06%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png 4.94kb 4.10kb 16.96%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png 25.94kb 21.55kb 16.90%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png 4.34kb 3.61kb 16.87%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png 4.45kb 3.70kb 16.86%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png 4.21kb 3.50kb 16.78%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png 2.24kb 1.86kb 16.75%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png 4.13kb 3.44kb 16.74%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png 3.36kb 2.80kb 16.73%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png 181.07kb 150.80kb 16.71%
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png 2.28kb 1.90kb 16.69%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png 4.97kb 4.14kb 16.68%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png 334.82kb 279.04kb 16.66%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png 48.38kb 40.32kb 16.65%
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png 1.85kb 1.54kb 16.60%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png 2.54kb 2.12kb 16.58%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png 3.18kb 2.66kb 16.57%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png 2.48kb 2.07kb 16.53%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png 9.56kb 7.98kb 16.47%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png 552.26kb 461.51kb 16.43%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png 2.74kb 2.29kb 16.41%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png 4.54kb 3.80kb 16.39%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png 1.89kb 1.58kb 16.36%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png 5.04kb 4.22kb 16.34%
/Chapter-wise code/Code - PyTorch/images/install_pytorch.png 23.96kb 20.05kb 16.30%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png 3.20kb 2.68kb 16.27%
/Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png 1.76kb 1.47kb 16.27%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png 2.55kb 2.14kb 16.20%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png 9.18kb 7.69kb 16.19%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/19. step - 5.png 238.57kb 199.97kb 16.18%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png 3.16kb 2.65kb 16.09%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png 3.03kb 2.54kb 16.08%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png 2.16kb 1.81kb 15.99%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png 233.07kb 195.81kb 15.99%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png 3.67kb 3.08kb 15.98%
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/31. multi-head attention.png 345.75kb 290.57kb 15.96%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png 7.17kb 6.02kb 15.96%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png 1.88kb 1.58kb 15.93%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png 2.91kb 2.45kb 15.86%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png 3.12kb 2.62kb 15.83%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png 2.95kb 2.48kb 15.78%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png 2.47kb 2.08kb 15.78%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png 83.39kb 70.27kb 15.74%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png 3.90kb 3.29kb 15.71%
/Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png 3.23kb 2.72kb 15.68%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png 15.39kb 12.98kb 15.67%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png 65.05kb 54.88kb 15.63%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png 305.21kb 257.75kb 15.55%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png 2.38kb 2.01kb 15.53%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png 2.82kb 2.39kb 15.34%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png 4.47kb 3.78kb 15.33%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png 3.02kb 2.56kb 15.16%
/Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png 1.72kb 1.46kb 15.12%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png 685.37kb 582.14kb 15.06%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png 60.06kb 51.08kb 14.95%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png 2.25kb 1.92kb 14.88%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png 2.00kb 1.70kb 14.88%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png 2.77kb 2.36kb 14.78%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png 27.69kb 23.60kb 14.77%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png 3.28kb 2.80kb 14.74%
/Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png 28.01kb 23.91kb 14.65%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png 38.01kb 32.48kb 14.54%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png 1.91kb 1.63kb 14.53%
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png 1.73kb 1.48kb 14.42%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg 82.79kb 70.88kb 14.39%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png 187.09kb 160.23kb 14.36%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png 65.94kb 56.48kb 14.35%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png 4.67kb 4.01kb 14.29%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png 2.47kb 2.12kb 14.24%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png 137.33kb 117.78kb 14.24%
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png 292.32kb 250.87kb 14.18%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png 2.24kb 1.92kb 14.17%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png 16.95kb 14.55kb 14.14%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png 3.18kb 2.73kb 14.12%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png 1.78kb 1.53kb 14.08%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png 2.59kb 2.23kb 14.03%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png 3.30kb 2.84kb 14.01%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png 1.85kb 1.59kb 14.01%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png 3.06kb 2.63kb 14.00%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png 60.36kb 51.95kb 13.93%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png 3.48kb 3.00kb 13.92%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png 192.15kb 165.71kb 13.76%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png 2.22kb 1.92kb 13.70%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png 1.98kb 1.71kb 13.69%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png 1.60kb 1.38kb 13.66%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png 399.13kb 344.96kb 13.57%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png 2.41kb 2.09kb 13.35%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png 2.55kb 2.21kb 13.31%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png 16.32kb 14.16kb 13.25%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png 1.80kb 1.56kb 13.17%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png 2.26kb 1.97kb 13.03%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png 2.67kb 2.33kb 13.03%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png 3.66kb 3.18kb 12.98%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png 61.52kb 53.54kb 12.98%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png 1.66kb 1.44kb 12.85%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png 85.95kb 74.96kb 12.79%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png 85.95kb 74.96kb 12.79%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png 1.63kb 1.42kb 12.77%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png 2.59kb 2.26kb 12.75%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png 204.76kb 178.87kb 12.64%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png 2.07kb 1.81kb 12.57%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png 20.91kb 18.28kb 12.57%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png 1.51kb 1.33kb 12.39%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png 1.57kb 1.38kb 12.35%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png 24.69kb 21.67kb 12.24%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png 3.19kb 2.81kb 12.08%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png 2.80kb 2.46kb 11.93%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png 25.38kb 22.35kb 11.92%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png 38.47kb 33.89kb 11.91%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png 24.93kb 21.97kb 11.88%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png 1.65kb 1.46kb 11.83%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png 2.30kb 2.03kb 11.67%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png 108.77kb 96.09kb 11.65%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png 2.60kb 2.30kb 11.60%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png 22.96kb 20.30kb 11.60%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png 4.28kb 3.79kb 11.42%
/Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png 1.47kb 1.30kb 11.33%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png 1.38kb 1.22kb 11.27%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png 18.88kb 16.77kb 11.19%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png 2.97kb 2.64kb 11.07%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png 43.84kb 38.99kb 11.07%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png 2.56kb 2.28kb 11.05%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png 16.53kb 14.70kb 11.04%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png 1.38kb 1.23kb 10.93%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png 35.95kb 32.02kb 10.92%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png 31.98kb 28.52kb 10.84%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png 9.85kb 8.81kb 10.50%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png 1.37kb 1.23kb 10.47%
/Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png 38.68kb 34.67kb 10.39%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png 10.17kb 9.15kb 9.99%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png 2.03kb 1.83kb 9.91%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png 1.30kb 1.18kb 9.36%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png 30.35kb 27.53kb 9.30%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png 1.25kb 1.14kb 9.18%
/Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png 1.50kb 1.36kb 9.14%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png 1.45kb 1.32kb 9.10%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png 2.28kb 2.07kb 9.05%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png 1.63kb 1.49kb 8.97%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png 1.24kb 1.13kb 8.77%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png 46.35kb 42.38kb 8.56%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png 23.83kb 21.81kb 8.46%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png 66.37kb 60.77kb 8.44%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png 1.44kb 1.32kb 8.36%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png 11.52kb 10.56kb 8.30%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png 1.65kb 1.51kb 8.30%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg 26.52kb 24.33kb 8.26%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg 26.52kb 24.33kb 8.26%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png 1.32kb 1.22kb 7.98%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png 15.64kb 14.40kb 7.92%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png 15.37kb 14.16kb 7.85%
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png 2.70kb 2.49kb 7.77%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png 1.69kb 1.56kb 7.75%
/Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png 14.12kb 13.04kb 7.63%
/Deep Learning Nanodegree Certificate/images/final_completion_certificate.png 142.19kb 131.39kb 7.60%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png 1.22kb 1.13kb 7.38%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png 27.74kb 25.72kb 7.29%
/Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png 2.24kb 2.08kb 7.28%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png 145.92kb 135.40kb 7.21%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png 15.15kb 14.07kb 7.16%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png 22.28kb 20.69kb 7.16%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png 85.44kb 79.39kb 7.08%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png 15.29kb 14.22kb 7.03%
/images/deep-learning-book-goodfellow-cover.jpg 181.02kb 168.33kb 7.01%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png 7.54kb 7.03kb 6.82%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png 101.06kb 94.21kb 6.78%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png 34.16kb 31.85kb 6.77%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png 97.64kb 91.08kb 6.72%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png 6.02kb 5.62kb 6.60%
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png 30.23kb 28.27kb 6.48%
/Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png 2.11kb 1.98kb 6.39%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png 7.20kb 6.75kb 6.27%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png 20.69kb 19.41kb 6.15%
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png 4.16kb 3.91kb 6.10%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png 5.90kb 5.56kb 5.74%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png 6.07kb 5.73kb 5.71%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png 46.17kb 43.57kb 5.65%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png 1.69kb 1.60kb 5.44%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png 53.02kb 50.24kb 5.25%
/Chapter-wise code/Code - PyTorch/images/activating_gpu.png 49.22kb 46.67kb 5.19%
/Chapter-wise code/images/ben_passmore.jpg 318.59kb 302.16kb 5.16%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png 9.40kb 8.92kb 5.11%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png 117.26kb 111.39kb 5.01%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png 10.75kb 10.22kb 4.96%
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png 1.96kb 1.86kb 4.93%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png 6.12kb 5.83kb 4.77%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png 13.94kb 13.31kb 4.54%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png 24.69kb 23.57kb 4.53%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png 4.56kb 4.36kb 4.45%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png 5.63kb 5.38kb 4.41%
/Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png 41.55kb 39.72kb 4.40%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png 8.92kb 8.53kb 4.38%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png 19.07kb 18.29kb 4.13%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png 21.76kb 20.91kb 3.90%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png 12.73kb 12.23kb 3.86%
/Chapter-wise code/images/octopus.jpg 90.07kb 86.62kb 3.83%
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png 7.81kb 7.51kb 3.81%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png 9.02kb 8.70kb 3.49%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png 6.69kb 6.46kb 3.47%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png 4.05kb 3.92kb 3.44%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png 11.06kb 10.68kb 3.37%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png 123.91kb 119.80kb 3.32%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png 57.26kb 55.37kb 3.31%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png 62.86kb 60.78kb 3.30%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png 1.36kb 1.32kb 3.29%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png 13.14kb 12.71kb 3.21%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png 27.79kb 26.90kb 3.20%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png 33.13kb 32.11kb 3.07%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png 53.90kb 52.34kb 2.90%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png 85.16kb 82.71kb 2.88%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png 12.58kb 12.22kb 2.84%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png 105.44kb 102.46kb 2.83%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png 3.50kb 3.41kb 2.81%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png 71.64kb 69.68kb 2.74%
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png 5.24kb 5.11kb 2.48%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png 5.40kb 5.27kb 2.39%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png 21.34kb 20.84kb 2.33%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png 1.14kb 1.12kb 1.80%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png 18.18kb 17.88kb 1.66%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png 6.30kb 6.20kb 1.58%
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png 1.69kb 1.66kb 1.50%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png 90.91kb 89.72kb 1.31%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png 64.44kb 63.63kb 1.27%
/Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png 4.47kb 4.42kb 1.20%
/Chapter-wise code/images/hockney.jpg 18.31kb 18.11kb 1.10%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png 35.56kb 35.20kb 1.01%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png 19.66kb 19.50kb 0.82%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png 64.39kb 63.95kb 0.68%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png 50.73kb 50.39kb 0.67%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png 155.61kb 154.69kb 0.59%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png 934.39kb 930.58kb 0.41%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png 934.39kb 930.58kb 0.41%
/Chapter-wise code/images/target.png 366.91kb 365.87kb 0.28%
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png 9.33kb 9.30kb 0.28%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png 527.83kb 526.52kb 0.25%
/Chapter-wise code/images/target_octopus.png 233.01kb 232.43kb 0.25%
/Chapter-wise code/images/style_purva.png 349.62kb 348.80kb 0.23%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png 504.69kb 503.56kb 0.23%
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png 305.47kb 305.06kb 0.13%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png 446.70kb 446.22kb 0.11%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png 121.01kb 120.89kb 0.10%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png 238.78kb 238.54kb 0.10%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png 108.09kb 107.99kb 0.09%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png 94.24kb 94.16kb 0.09%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png 129.56kb 129.45kb 0.08%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png 120.82kb 120.73kb 0.07%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png 76.29kb 76.24kb 0.06%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png 85.23kb 85.18kb 0.06%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png 66.65kb 66.61kb 0.06%
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png 199.24kb 199.13kb 0.06%
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png 118.47kb 118.41kb 0.05%
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png 72.92kb 72.89kb 0.05%
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png 111.66kb 111.62kb 0.04%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png 98.54kb 98.51kb 0.03%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png 260.12kb 260.03kb 0.03%
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png 59.60kb 59.58kb 0.03%
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png 175.95kb 175.90kb 0.03%
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png 101.60kb 101.57kb 0.03%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png 141.95kb 141.92kb 0.02%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png 92.04kb 92.02kb 0.01%
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png 194.98kb 194.96kb 0.01%
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png 97.61kb 97.61kb 0.00%
Total : 53,858.05kb 43,285.75kb 19.63%

Black Lives Matter | 💰 donate | 🎓 learn | ✍🏾 sign

📝 docs | :octocat: repo | 🙋🏾 issues | 🏅 swag | 🏪 marketplace

@imgbot imgbot bot force-pushed the imgbot branch 3 times, most recently from b7eaf91 to e467ac0 Compare December 10, 2020 12:05
@imgbot imgbot bot force-pushed the imgbot branch 8 times, most recently from 1ecbf2d to f64edfe Compare December 14, 2020 05:44
@imgbot imgbot bot force-pushed the imgbot branch 2 times, most recently from a6761ad to 7d4315f Compare February 8, 2021 06:43
@imgbot imgbot bot force-pushed the imgbot branch 4 times, most recently from e8ac8db to e0655ec Compare February 21, 2021 08:11
@imgbot imgbot bot force-pushed the imgbot branch 11 times, most recently from f8e9889 to 151ec3e Compare March 4, 2021 10:33
@imgbot imgbot bot force-pushed the imgbot branch 2 times, most recently from 908b1ca to cdd98a7 Compare March 7, 2021 07:22
*Total -- 53,858.05kb -> 43,285.75kb (19.63%)

/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/outliers_padding_ex.png -- 25.24kb -> 9.11kb (63.89%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/learning_autoencoder.png -- 12.69kb -> 5.56kb (56.16%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/sparse_encoders.png -- 7.91kb -> 3.48kb (55.94%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/quora_dataset.png -- 75.64kb -> 33.74kb (55.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/gradient_of_loss.png -- 7.08kb -> 3.45kb (51.3%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_train.png -- 5.31kb -> 2.61kb (50.82%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/final_loss_function.png -- 5.47kb -> 2.73kb (50.14%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/fr_embedding.png -- 6.92kb -> 3.47kb (49.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/new_triplet_loss.png -- 39.07kb -> 19.63kb (49.76%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_embeddings.png -- 7.65kb -> 3.87kb (49.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/accuracy.png -- 6.24kb -> 3.16kb (49.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/cosine_similarity.png -- 3.62kb -> 1.84kb (49.18%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/translation_problem.png -- 3.60kb -> 1.95kb (45.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/modified_forbenius_norm.png -- 3.02kb -> 1.66kb (44.96%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/description.png -- 5.85kb -> 3.25kb (44.49%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN.png -- 32.69kb -> 18.47kb (43.48%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/update_r.png -- 3.03kb -> 1.73kb (42.84%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/distance_formula.png -- 3.22kb -> 1.87kb (42.08%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/tanh_fn.png -- 216.79kb -> 126.69kb (41.56%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching@1x.png -- 55.89kb -> 32.68kb (41.53%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/triplet_loss.png -- 14.70kb -> 8.63kb (41.26%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/leaky_relu.png -- 239.64kb -> 142.08kb (40.71%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/original_forbenius_norm.png -- 2.40kb -> 1.45kb (39.55%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_decompost.png -- 4.23kb -> 2.63kb (37.8%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/CycleGAN_loss.png -- 139.58kb -> 87.27kb (37.48%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/denoising.png -- 34.70kb -> 21.73kb (37.36%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cyclegan_generator_ex.png -- 151.93kb -> 95.25kb (37.31%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/DAE.png -- 1.46kb -> 0.92kb (37.22%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/discriminator_layers.png -- 104.30kb -> 65.72kb (36.99%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/30.eca_1.png -- 5.92kb -> 3.75kb (36.71%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/network_diagram.png -- 25.88kb -> 16.38kb (36.7%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching_ex.png -- 124.59kb -> 79.80kb (35.95%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/frob_in_trace.png -- 4.11kb -> 2.69kb (34.69%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/norms.png -- 4.17kb -> 2.73kb (34.61%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_network.png -- 22.58kb -> 14.80kb (34.47%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/max_norm.png -- 3.45kb -> 2.27kb (34.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/12. Dot product.png -- 488.90kb -> 321.92kb (34.15%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/sequence_batching.png -- 23.58kb -> 15.60kb (33.85%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/43.self_information.png -- 3.63kb -> 2.41kb (33.81%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/11. Autocorrect Tool/images/auto-correct.png -- 118.32kb -> 79.16kb (33.09%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/l1_norm.png -- 3.04kb -> 2.09kb (31.09%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_2.png -- 207.53kb -> 143.84kb (30.69%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/15. step - 1.png -- 125.48kb -> 87.18kb (30.52%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. topic matrix -2.png -- 306.85kb -> 213.49kb (30.42%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a topic - 1.png -- 374.49kb -> 261.79kb (30.09%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/7. topic matrix - 1.png -- 298.55kb -> 208.83kb (30.05%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/14. Sample a topic-3.png -- 497.99kb -> 348.83kb (29.95%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_transpose.png -- 3.52kb -> 2.47kb (29.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/51.bagging_3.png -- 3.08kb -> 2.16kb (29.82%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Skip-gram model.png -- 746.83kb -> 524.35kb (29.79%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/3. Matrix multiplication .png -- 624.24kb -> 441.60kb (29.26%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/8. Beta Distribution .png -- 252.73kb -> 178.82kb (29.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/10. decimal beta distribution .png -- 313.58kb -> 222.46kb (29.06%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/15. sample a topic - 2.png -- 655.19kb -> 464.83kb (29.05%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3. matrix.png -- 465.81kb -> 330.79kb (28.99%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/3.  document-term matric.png -- 465.81kb -> 330.79kb (28.99%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/1. C-BOW.png -- 402.19kb -> 285.91kb (28.91%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/siamese_networks.png -- 267.54kb -> 190.57kb (28.77%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/8. NMT with attention.png -- 253.07kb -> 180.34kb (28.74%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_2.png -- 69.64kb -> 49.66kb (28.69%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/2. text cleaning.png -- 295.47kb -> 210.91kb (28.62%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/4. Matrix multiplcation max.png -- 677.38kb -> 483.74kb (28.59%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/12. Dirichlet distribution .png -- 431.57kb -> 308.23kb (28.58%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/6. TF-IDF Matrix.png -- 482.89kb -> 345.33kb (28.49%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/5. BOW-Matrix.png -- 408.77kb -> 292.60kb (28.42%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/20. final topic model.png -- 621.05kb -> 444.78kb (28.38%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/14.equivariance.png -- 14.23kb -> 10.21kb (28.25%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/1. BOW.png -- 166.51kb -> 119.74kb (28.09%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/18. sample a word - 3.png -- 459.65kb -> 332.78kb (27.6%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. combining models.png -- 593.49kb -> 429.75kb (27.59%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/16. sample a word-1.png -- 370.33kb -> 268.45kb (27.51%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_denoise.png -- 135.98kb -> 98.78kb (27.36%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/17. sample a word -2.png -- 520.15kb -> 378.19kb (27.29%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/6. document matrix.png -- 243.23kb -> 176.93kb (27.26%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/reviews_ex.png -- 66.56kb -> 48.47kb (27.19%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/conv_enc_1.png -- 151.92kb -> 110.76kb (27.1%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charRNN@0.5x.png -- 15.81kb -> 11.55kb (26.94%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/2. Latent Variables.png -- 355.89kb -> 260.58kb (26.78%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/2. basic encoder-decoder.png -- 311.37kb -> 228.01kb (26.77%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/11. step - 5.png -- 166.55kb -> 122.01kb (26.74%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/7. One-Hot Encoding.png -- 297.62kb -> 218.06kb (26.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/4. Corpus & Vocab.png -- 296.62kb -> 217.34kb (26.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/13. Siamese Networks/Question Duplication/images/sample_output_1.png -- 62.00kb -> 45.53kb (26.56%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/1. Naive Bayes Classifier/images/NLP Pipeline.png -- 423.16kb -> 310.97kb (26.51%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/19. Topic model.png -- 870.01kb -> 639.92kb (26.45%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_2.png -- 26.67kb -> 19.64kb (26.37%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/training_cycle_ex.png -- 184.52kb -> 136.44kb (26.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/forward_pass.png -- 23.42kb -> 17.36kb (25.87%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/9. step - 3.png -- 251.84kb -> 186.80kb (25.83%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/1. drawbacks of seq2seq.png -- 241.22kb -> 179.17kb (25.73%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/SVD.png -- 2.62kb -> 1.95kb (25.62%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/07.b_computation.png -- 43.40kb -> 32.34kb (25.49%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/3. transformer model.png -- 301.77kb -> 224.86kb (25.49%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/10. step - 4.png -- 280.26kb -> 208.86kb (25.48%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/8. step - 2.png -- 224.99kb -> 167.68kb (25.47%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/12. step - 6.png -- 197.75kb -> 147.80kb (25.26%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/06.f_computation.png -- 31.97kb -> 23.90kb (25.26%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/38. variance.png -- 8.29kb -> 6.20kb (25.22%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_final_algo.png -- 65.62kb -> 49.11kb (25.15%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthonormal_matrix.png -- 2.91kb -> 2.18kb (25.07%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_3.png -- 65.62kb -> 49.25kb (24.94%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/41.Properties_of_softplus.png -- 23.15kb -> 17.38kb (24.93%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/08.toeplitz_matrix_1d.png -- 12.13kb -> 9.11kb (24.85%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/13. 3D D Distributions.png -- 664.15kb -> 500.93kb (24.58%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/22. step - 1.png -- 337.22kb -> 254.78kb (24.45%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/8. Word Embeddings.png -- 245.76kb -> 185.69kb (24.44%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/14. step - 8.png -- 205.73kb -> 155.60kb (24.37%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/11. Co-occurance probability.png -- 438.21kb -> 331.56kb (24.34%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/pos_review.png -- 35.03kb -> 26.54kb (24.26%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/3. word alignment.png -- 214.96kb -> 163.13kb (24.11%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/9. Word Embeddings - 1.png -- 212.00kb -> 160.96kb (24.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. Bayesian_stats.png -- 5.47kb -> 4.16kb (23.94%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.bagging_4.png -- 9.88kb -> 7.52kb (23.88%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/9. flexible attention.png -- 207.10kb -> 157.83kb (23.79%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/6. Inside attention layer.png -- 284.08kb -> 216.50kb (23.79%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/normas_2.png -- 2.37kb -> 1.80kb (23.74%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/13. step - 7.png -- 189.13kb -> 144.68kb (23.5%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/7. step - 1.png -- 154.82kb -> 118.85kb (23.23%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/10. Word2Vec.png -- 338.60kb -> 260.85kb (22.96%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/50. SSE.png -- 4.09kb -> 3.15kb (22.96%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/2. Deploy your own sentiment analysis model/Img/neg_review.png -- 45.31kb -> 34.95kb (22.87%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/3. Bigrams.png -- 484.46kb -> 373.73kb (22.86%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/7. Transition Probability.png -- 608.32kb -> 469.48kb (22.82%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/1. basic seq-to-seq model.png -- 242.75kb -> 187.35kb (22.82%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/7. Conditional_prob.png -- 3.79kb -> 2.92kb (22.82%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_block.png -- 33.53kb -> 25.91kb (22.73%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/2. look-up table.png -- 416.13kb -> 321.70kb (22.69%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/20. step - 6.png -- 306.69kb -> 237.71kb (22.49%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/23. MAP.png -- 5.59kb -> 4.34kb (22.3%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/41.bt_computation.png -- 17.84kb -> 13.87kb (22.28%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/4. alignment and attention.png -- 355.30kb -> 276.24kb (22.25%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/19. step - 5.png -- 248.33kb -> 193.12kb (22.23%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/27. step - 2.png -- 86.47kb -> 67.32kb (22.15%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/26. step -1 .png -- 48.08kb -> 37.43kb (22.15%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/23. step - 2.png -- 193.00kb -> 150.29kb (22.13%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/2.NMT basic model.png -- 210.69kb -> 164.08kb (22.12%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/16.l1_objective_function.png -- 3.59kb -> 2.80kb (22.01%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/26. step - 12.png -- 497.00kb -> 387.69kb (21.99%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/40. co_variance_02.png -- 3.43kb -> 2.67kb (21.99%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/16. step - 2.png -- 250.37kb -> 195.32kb (21.99%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/29. step - 4.png -- 106.88kb -> 83.50kb (21.88%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/euclidean_norm.png -- 2.79kb -> 2.18kb (21.8%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/25. step - 11.png -- 483.12kb -> 378.03kb (21.75%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/23. step - 9.png -- 447.99kb -> 350.63kb (21.73%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/04. unfolded_terminologies.png -- 27.05kb -> 21.17kb (21.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/22. step - 8.png -- 382.98kb -> 299.78kb (21.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/21. step - 7.png -- 334.19kb -> 261.74kb (21.68%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/24. step - 10.png -- 456.51kb -> 358.16kb (21.54%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/18.update_for_momentum.png -- 7.47kb -> 5.86kb (21.54%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/30. step - 5.png -- 200.61kb -> 157.60kb (21.44%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/19.first_result_calculus_tools.png -- 3.79kb -> 2.98kb (21.44%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/20.nestrov_momentum_update.png -- 7.78kb -> 6.12kb (21.41%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. unbiased_variance_estimator.png -- 3.89kb -> 3.06kb (21.37%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/15.l1_regularization.png -- 2.62kb -> 2.06kb (21.36%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/18.l1_decomposition_over_params.png -- 5.41kb -> 4.26kb (21.25%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/28.softplus_logit.png -- 6.93kb -> 5.46kb (21.12%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/24. step - 3.png -- 345.24kb -> 272.33kb (21.12%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/26.Precision_matrix.png -- 6.92kb -> 5.46kb (21.11%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/27. step - 13.png -- 525.49kb -> 415.01kb (21.02%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/reconstruction_error.png -- 114.79kb -> 90.90kb (20.82%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/02.emperical_risk.png -- 7.41kb -> 5.87kb (20.79%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/33.effect_of_constraints.png -- 7.37kb -> 5.84kb (20.78%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/cycle_consistency_ex.png -- 371.97kb -> 294.67kb (20.78%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/28. step - 3.png -- 96.38kb -> 76.42kb (20.72%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/33.regularized_newton.png -- 4.77kb -> 3.78kb (20.71%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/XY_season_images.png -- 275.48kb -> 218.42kb (20.71%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/25. step - 4.png -- 400.65kb -> 317.82kb (20.67%)
/Chapter-wise code/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%)
/Chapter-wise code/Code - PyTorch/logo/Pytorch_logo.png -- 19.23kb -> 15.26kb (20.64%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.effect_of_dropout.png -- 66.39kb -> 52.70kb (20.61%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/18. max_likelihood_estimation.png -- 7.39kb -> 5.87kb (20.59%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/25.Multivariate_distribution.png -- 7.47kb -> 5.93kb (20.56%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/15. MSE.png -- 4.88kb -> 3.88kb (20.5%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/15.Covariance.png -- 5.21kb -> 4.15kb (20.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/31.taylor_expansion.png -- 6.51kb -> 5.18kb (20.38%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/16. step - 2.png -- 118.75kb -> 94.60kb (20.34%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/19.minimize_function.png -- 4.40kb -> 3.51kb (20.23%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/20. attention formula.png -- 255.82kb -> 204.08kb (20.22%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/18.Bernoulli_distribution.png -- 7.27kb -> 5.80kb (20.19%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/03.l2_norm_penalty.png -- 2.28kb -> 1.82kb (20.09%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/39. co_variance_01.png -- 3.65kb -> 2.92kb (20.07%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/23.Precision.png -- 5.29kb -> 4.23kb (20.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/14. standard_error.png -- 5.00kb -> 4.00kb (20.02%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/07. test_error.png -- 3.60kb -> 2.88kb (19.98%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/33. sample_covariance.png -- 2.19kb -> 1.75kb (19.96%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/2. AWS Sagemaker dashboard.png -- 109.80kb -> 87.89kb (19.95%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/05.commutative_lhs.png -- 5.14kb -> 4.12kb (19.93%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/18. step - 4.png -- 171.40kb -> 137.32kb (19.89%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/7. attention visual - 1.png -- 117.12kb -> 93.87kb (19.85%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/6. T5 model.png -- 517.77kb -> 415.00kb (19.85%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/12.Expectation_for_continous_variables.png -- 3.71kb -> 2.97kb (19.77%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/29.Laplace.png -- 4.40kb -> 3.53kb (19.76%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/18. step - 4.png -- 255.88kb -> 205.37kb (19.74%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/15. step - 1.png -- 145.59kb -> 116.98kb (19.65%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/32.solution_to_constrained_lagrange.png -- 4.65kb -> 3.74kb (19.64%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/31.Emperical.png -- 3.46kb -> 2.78kb (19.6%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/04.jacobian_matrix.png -- 3.96kb -> 3.19kb (19.53%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/47.polyak_averaging_noncovex.png -- 3.40kb -> 2.74kb (19.49%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/1. AWS console dashboard.png -- 115.76kb -> 93.28kb (19.42%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/38.peturbed_obj_funct.png -- 4.22kb -> 3.40kb (19.39%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/42.Baeyes.png -- 3.24kb -> 2.61kb (19.37%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/span.png -- 2.41kb -> 1.94kb (19.36%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/39.Softplus.png -- 1.86kb -> 1.50kb (19.31%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/10.wt_expansion.png -- 4.49kb -> 3.63kb (19.26%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/20. conditional_mle.png -- 5.01kb -> 4.05kb (19.22%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/5. Calculating alignment for NMT model.png -- 576.54kb -> 465.75kb (19.22%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/9.Indipendence_Rule.png -- 4.50kb -> 3.63kb (19.17%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3 - 1.png -- 226.23kb -> 182.91kb (19.15%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/16.non_linear_model.png -- 5.00kb -> 4.04kb (19.14%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/20.second_result_calculus_tools.png -- 4.72kb -> 3.82kb (19.11%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/02.MSE.png -- 3.68kb -> 2.98kb (19.01%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/18.optimization_problem.png -- 4.84kb -> 3.92kb (18.98%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/04.2-D-cnn.png -- 9.38kb -> 7.61kb (18.84%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/17. step - 3.png -- 254.18kb -> 206.39kb (18.8%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/5. Emission Probability.png -- 379.97kb -> 308.89kb (18.71%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/12. bias.png -- 2.28kb -> 1.85kb (18.69%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/19. max_lik_est_expect.png -- 4.45kb -> 3.62kb (18.63%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.stable_softmax.png -- 4.98kb -> 4.05kb (18.62%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/3.jpd_1.png -- 2.15kb -> 1.75kb (18.6%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/06.commutative_rhs.png -- 4.72kb -> 3.85kb (18.55%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/24.linear_approach_to_bernoulli.png -- 5.20kb -> 4.24kb (18.52%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/17. step - 3.png -- 148.35kb -> 120.91kb (18.5%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/14. with teacher forcing.png -- 326.48kb -> 266.17kb (18.47%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/21. causal attention overview.png -- 111.98kb -> 91.54kb (18.25%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/22.Gaussian_distribution.png -- 5.39kb -> 4.41kb (18.24%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/32.update_rule_newton.png -- 2.96kb -> 2.42kb (18.17%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/01.cost_function_for_entire_data_set.png -- 4.34kb -> 3.56kb (18.11%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/5. positional encoding.png -- 211.50kb -> 173.58kb (17.93%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/07.cross_correlation.png -- 4.71kb -> 3.86kb (17.93%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/11.l2_effect_of_weight_decay.png -- 4.60kb -> 3.78kb (17.91%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/6.Marginal_prob_continous.png -- 2.56kb -> 2.10kb (17.8%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/03.vectorized_chain_rule.png -- 3.06kb -> 2.52kb (17.71%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.linear_output.png -- 2.32kb -> 1.91kb (17.68%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/01.function_composition.png -- 2.77kb -> 2.28kb (17.64%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/back_prop_example.png -- 9.04kb -> 7.45kb (17.61%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/25. linear_regression.png -- 2.44kb -> 2.01kb (17.51%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/02.function_chain_rule.png -- 3.71kb -> 3.06kb (17.4%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/39.leaky_relu.png -- 3.47kb -> 2.87kb (17.22%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/59.am_pd_dropout.png -- 3.39kb -> 2.81kb (17.08%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/28. BLEU Score Calculation.png -- 408.23kb -> 338.55kb (17.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/28. Kernels.png -- 3.26kb -> 2.70kb (17.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/06.mse_linear_transformations.png -- 4.94kb -> 4.10kb (16.96%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/24.Standard_Normal_Distribution.png -- 25.94kb -> 21.55kb (16.9%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/34.maximization_goal.png -- 4.34kb -> 3.61kb (16.87%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/11.sgd_convergence.png -- 4.45kb -> 3.70kb (16.86%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/09.l2_quadratic_approximation.png -- 4.21kb -> 3.50kb (16.78%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/36.Sigmoid_function.png -- 2.24kb -> 1.86kb (16.75%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/13.Rules_of_expectation.png -- 4.13kb -> 3.44kb (16.74%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.am_pd_bagging.png -- 3.36kb -> 2.80kb (16.73%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/10. data in NMT.png -- 181.07kb -> 150.80kb (16.71%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/orthogonal_matrix.png -- 2.28kb -> 1.90kb (16.69%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/17.cross_entropy.png -- 4.97kb -> 4.14kb (16.68%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/13. No teacher forcing.png -- 334.82kb -> 279.04kb (16.66%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/24.traditional_convolution.png -- 48.38kb -> 40.32kb (16.65%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/eigen_vector.png -- 1.85kb -> 1.54kb (16.6%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/25.sigmoid_bernoulli.png -- 2.54kb -> 2.12kb (16.58%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/29.softplus.png -- 3.18kb -> 2.66kb (16.57%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/26. logistic_regression.png -- 2.48kb -> 2.07kb (16.53%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/15.relu_graph.png -- 9.56kb -> 7.98kb (16.47%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/11. NMT setup-english.png -- 552.26kb -> 461.51kb (16.43%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/02.chain_rul.png -- 2.74kb -> 2.29kb (16.41%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/8.Chain_Rule.png -- 4.54kb -> 3.80kb (16.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/40.conjugates.png -- 1.89kb -> 1.58kb (16.36%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/10.Conditional_Indipendence.png -- 5.04kb -> 4.22kb (16.34%)
/Chapter-wise code/Code - PyTorch/images/install_pytorch.png -- 23.96kb -> 20.05kb (16.3%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/14.Variance.png -- 3.20kb -> 2.68kb (16.27%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/diag_matrix_2.png -- 1.76kb -> 1.47kb (16.27%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/38.Softplus_function.png -- 2.55kb -> 2.14kb (16.2%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/12.decomposition_of_hessian_matrix.png -- 9.18kb -> 7.69kb (16.19%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/19. step - 5.png -- 238.57kb -> 199.97kb (16.18%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/10.l2_approximaton_minimal.png -- 3.16kb -> 2.65kb (16.09%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/11.Expectation.png -- 3.03kb -> 2.54kb (16.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/04.ill_conditioning.png -- 2.16kb -> 1.81kb (15.99%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/4. multi-head attention.png -- 233.07kb -> 195.81kb (15.99%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/05.non_linear_function.png -- 3.67kb -> 3.08kb (15.98%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/2. Neural Text Summarization/images/31. multi-head attention.png -- 345.75kb -> 290.57kb (15.96%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/03.1-D-cnn.png -- 7.17kb -> 6.02kb (15.96%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/30.Dirac_delta.png -- 1.88kb -> 1.58kb (15.93%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/36.congugate_solution.png -- 2.91kb -> 2.45kb (15.86%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/41.maxout_units.png -- 3.12kb -> 2.62kb (15.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/35.obj_function_without_noise.png -- 2.95kb -> 2.48kb (15.78%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. asymptotically_unbiased.png -- 2.47kb -> 2.08kb (15.78%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/48.supervised_pretraining.png -- 83.39kb -> 70.27kb (15.74%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/40.param_relu.png -- 3.90kb -> 3.29kb (15.71%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/transpose.png -- 3.23kb -> 2.72kb (15.68%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/31.softmax_fucntion.png -- 15.39kb -> 12.98kb (15.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/23.tiled_convolution.png -- 65.05kb -> 54.88kb (15.63%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/8. Sentence generation.png -- 305.21kb -> 257.75kb (15.55%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/21. Parameters_controlling_normal_distribution.png -- 2.38kb -> 2.01kb (15.53%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/29. Kernels_2.png -- 2.82kb -> 2.39kb (15.34%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/10.complete_linear_xor.png -- 4.47kb -> 3.78kb (15.33%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/32.Multinouli_distribution.png -- 3.02kb -> 2.56kb (15.16%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/diagnol_matrix.png -- 1.72kb -> 1.46kb (15.12%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/12. NMT setup - german.png -- 685.37kb -> 582.14kb (15.06%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/7. running notebook.png -- 60.06kb -> 51.08kb (14.95%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/08.linear_hidden.png -- 2.25kb -> 1.92kb (14.88%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/12.learning_rate_decay.png -- 2.00kb -> 1.70kb (14.88%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/21.Gaussian_distribution.png -- 2.77kb -> 2.36kb (14.78%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/16. relationship_graph.png -- 27.69kb -> 23.60kb (14.77%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/07.l2_weight_update_3.png -- 3.28kb -> 2.80kb (14.74%)
/Chapter-wise code/Code - PyTorch/images/activating_gpu_2.png -- 28.01kb -> 23.91kb (14.65%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/25.computation.png -- 38.01kb -> 32.48kb (14.54%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/30. dot_product.png -- 1.91kb -> 1.63kb (14.53%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr.png -- 1.73kb -> 1.48kb (14.42%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/1. Text generation using RNNs/assets/charseq.jpeg -- 82.79kb -> 70.88kb (14.39%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/3. Feature Extraction & Embeddings/images/5. TF-IDF.png -- 187.09kb -> 160.23kb (14.36%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/43.Effect_of_depth_on_accuracy.png -- 65.94kb -> 56.48kb (14.35%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/29.lagrange_with_constrains.png -- 4.67kb -> 4.01kb (14.29%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/14.relu.png -- 2.47kb -> 2.12kb (14.24%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/1. pos tagging.png -- 137.33kb -> 117.78kb (14.24%)
/Chapter-wise code/Code - PyTorch/7. Attention Models/1. NMT/images/29. ROUGE Score Calculation.png -- 292.32kb -> 250.87kb (14.18%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/36.peturbation.png -- 2.24kb -> 1.92kb (14.17%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/general_rule.png -- 16.95kb -> 14.55kb (14.14%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/06.l2_weight_update_2.png -- 3.18kb -> 2.73kb (14.12%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/4.pdf_interval.png -- 1.78kb -> 1.53kb (14.08%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/33.conditions.png -- 2.59kb -> 2.23kb (14.03%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/08.jacobian_matrix.png -- 3.30kb -> 2.84kb (14.01%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/17. consistency.png -- 1.85kb -> 1.59kb (14.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/5.Marginal_prob.png -- 3.06kb -> 2.63kb (14%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/26.structured_outputs.png -- 60.36kb -> 51.95kb (13.93%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/36.ReLU_generalization.png -- 3.48kb -> 3.00kb (13.92%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/1. Generating hand-written digits using GANs/images/gan_pipeline.png -- 192.15kb -> 165.71kb (13.76%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/11.linear_network.png -- 2.22kb -> 1.92kb (13.7%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/35.saturation_condition_01.png -- 1.98kb -> 1.71kb (13.69%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/11. function_estimator.png -- 1.60kb -> 1.38kb (13.66%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/6. Hidden Markov Model.png -- 399.13kb -> 344.96kb (13.57%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/13.relu_applied.png -- 2.41kb -> 2.09kb (13.35%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/07.linear_model.png -- 2.55kb -> 2.21kb (13.31%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/default_initialization.png -- 16.32kb -> 14.16kb (13.25%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.prob_dist.png -- 1.80kb -> 1.56kb (13.17%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/22. data_likelihood.png -- 2.26kb -> 1.97kb (13.03%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/27.Exponential_Distribution.png -- 2.67kb -> 2.33kb (13.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/17.l1_gradient.png -- 3.66kb -> 3.18kb (12.98%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/35.congugate_directions.png -- 61.52kb -> 53.54kb (12.98%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/32. ith-example.png -- 1.66kb -> 1.44kb (12.85%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/resnet_50.png -- 85.95kb -> 74.96kb (12.79%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/2.jpd_2.png -- 1.63kb -> 1.42kb (12.77%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/42.tanh.png -- 2.59kb -> 2.26kb (12.75%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/2. Parts of Speech Tagging/images/4. ET probabilities.png -- 204.76kb -> 178.87kb (12.64%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/04. MSE-train.png -- 2.07kb -> 1.81kb (12.57%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/09.circulant_matrix.png -- 20.91kb -> 18.28kb (12.57%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/06. linear_regression.png -- 1.51kb -> 1.33kb (12.39%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/13. bias_of_variance_of_gaussian_distribution.png -- 1.57kb -> 1.38kb (12.35%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/8. Autoencoders/images/autoencoder_1.png -- 24.69kb -> 21.67kb (12.24%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/37. eigen_vectors.png -- 3.19kb -> 2.81kb (12.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.ill_conditioing_in_taylor_series.png -- 2.80kb -> 2.46kb (11.93%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/08. Error_graph.png -- 25.38kb -> 22.35kb (11.92%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/22.unshared_convolution.png -- 38.47kb -> 33.89kb (11.91%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/13.eigen_decomposition.png -- 24.93kb -> 21.97kb (11.88%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/1.uniform_distribution.png -- 1.65kb -> 1.46kb (11.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/08.l2_minimum_training_cost.png -- 2.30kb -> 2.03kb (11.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/12.sparse_connections.png -- 108.77kb -> 96.09kb (11.65%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/16.Covariance_matrix.png -- 2.60kb -> 2.30kb (11.6%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/normal_vs_general.png -- 22.96kb -> 20.30kb (11.6%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/05. Optimum_weight.png -- 4.28kb -> 3.79kb (11.42%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/unit_vector.png -- 1.47kb -> 1.30kb (11.33%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/34.prior_probability.png -- 1.38kb -> 1.22kb (11.27%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/uniform_weights.png -- 18.88kb -> 16.77kb (11.19%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/31. kernel_predictions.png -- 2.97kb -> 2.64kb (11.07%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/mini_batch_1.png -- 43.84kb -> 38.99kb (11.07%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/10. point_estimator.png -- 2.56kb -> 2.28kb (11.05%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/7. Weight Initialization Strategies/images/zeros_vs_ones.png -- 16.53kb -> 14.70kb (11.04%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/38.active_relu_condition_2.png -- 1.38kb -> 1.23kb (10.93%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/61.effect_of_dataset_size.png -- 35.95kb -> 32.02kb (10.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/41.multi_task_learning.png -- 31.98kb -> 28.52kb (10.84%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/40.Softplus_graph.png -- 9.85kb -> 8.81kb (10.5%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/33.Gaussian_mixture.png -- 1.37kb -> 1.23kb (10.47%)
/Chapter-wise code/Code - PyTorch/1. Intro to PyTorch/images/jacobian_product.png -- 38.68kb -> 34.67kb (10.39%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/37.Sigmoid_graph.png -- 10.17kb -> 9.15kb (9.99%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/03. training_set.png -- 2.03kb -> 1.83kb (9.91%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/43.memory_space_BFGS.png -- 1.30kb -> 1.18kb (9.36%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/05.graphs_and_chain_rule.png -- 30.35kb -> 27.53kb (9.3%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/21.case_1_2.png -- 1.25kb -> 1.14kb (9.18%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/symmetric_matrix.png -- 1.50kb -> 1.36kb (9.14%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/26.first_sigmoid_layer.png -- 1.45kb -> 1.32kb (9.1%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/17.Covariance_matrix_2.png -- 2.28kb -> 2.07kb (9.05%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/32.linear_approach_for_softmax.png -- 1.63kb -> 1.49kb (8.97%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/22.case_2_2.png -- 1.24kb -> 1.13kb (8.77%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/05.issue_with_local_minima.png -- 46.35kb -> 42.38kb (8.56%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/08.gradient_clipping.png -- 23.83kb -> 21.81kb (8.46%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/Ch_5.1_Back_Propagation/images/01.computational_graphs.png -- 66.37kb -> 60.77kb (8.44%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/29.sepearable_kernel.png -- 1.44kb -> 1.32kb (8.36%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/45.param_tying_01.png -- 11.52kb -> 10.56kb (8.3%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/21. examples.png -- 1.65kb -> 1.51kb (8.3%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/horse2zebra.jpg -- 26.52kb -> 24.33kb (8.26%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/34.computational_complex_newton.png -- 1.32kb -> 1.22kb (7.98%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/15.gradient.png -- 15.64kb -> 14.40kb (7.92%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/28.gen_lag_constrains.png -- 15.37kb -> 14.16kb (7.85%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_097.png -- 2.70kb -> 2.49kb (7.77%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/22.linear_units.png -- 1.69kb -> 1.56kb (7.75%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/properties_of_norm.png -- 14.12kb -> 13.04kb (7.63%)
/Deep Learning Nanodegree Certificate/images/final_completion_certificate.png -- 142.19kb -> 131.39kb (7.6%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/28.traditional_kernel.png -- 1.22kb -> 1.13kb (7.38%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/training_loss.png -- 27.74kb -> 25.72kb (7.29%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/linear_combination'.png -- 2.24kb -> 2.08kb (7.28%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/46.comparison_bw_bn_nonbn.png -- 145.92kb -> 135.40kb (7.21%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/22.grad_update_for_adagrad.png -- 15.15kb -> 14.07kb (7.16%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/09.linear_deep_network.png -- 22.28kb -> 20.69kb (7.16%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/5. create IAM role.png -- 85.44kb -> 79.39kb (7.08%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/25.rmsprop_gradient.png -- 15.29kb -> 14.22kb (7.03%)
/images/deep-learning-book-goodfellow-cover.jpg -- 181.02kb -> 168.33kb (7.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/44.Shannon_entropy.png -- 7.54kb -> 7.03kb (6.82%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/52.eight_detector.png -- 101.06kb -> 94.21kb (6.78%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/6. Machine Translation/NMT-Basic/images/en_fr_embeddings.png -- 34.16kb -> 31.85kb (6.77%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/6. notebook instance settings.png -- 97.64kb -> 91.08kb (6.72%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/49.Directed_graphs.png -- 6.02kb -> 5.62kb (6.6%)
/Chapter-wise code/Code - PyTorch/6. Natural-Language-Processing/4. Topic Modelling/images/9. gamma function.png -- 30.23kb -> 28.27kb (6.48%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/identity_matrix.png -- 2.11kb -> 1.98kb (6.39%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/27.update_rmsprop.png -- 7.20kb -> 6.75kb (6.27%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/23.accumulate_adagrad.png -- 20.69kb -> 19.41kb (6.15%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace.png -- 4.16kb -> 3.91kb (6.1%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/30.final_update_adam.png -- 5.90kb -> 5.56kb (5.74%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/52.Normalizing_constant.png -- 6.07kb -> 5.73kb (5.71%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/27.single_vs_multichanel.png -- 46.17kb -> 43.57kb (5.65%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/04.hidden_layer.png -- 1.69kb -> 1.60kb (5.44%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/27.sigmoidal_transformation_of_logit.png -- 53.02kb -> 50.24kb (5.25%)
/Chapter-wise code/Code - PyTorch/images/activating_gpu.png -- 49.22kb -> 46.67kb (5.19%)
/Chapter-wise code/images/ben_passmore.jpg -- 318.59kb -> 302.16kb (5.16%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/26.accumulate_rmsprop.png -- 9.40kb -> 8.92kb (5.11%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/57.dropout_modelling.png -- 117.26kb -> 111.39kb (5.01%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/data/15. rnn_classifier.png -- 10.75kb -> 10.22kb (4.96%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_096.png -- 1.96kb -> 1.86kb (4.93%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/47.Cross_entropy.png -- 6.12kb -> 5.83kb (4.77%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/45.KL_divergence.png -- 13.94kb -> 13.31kb (4.54%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.updated_convolution_operation.png -- 24.69kb -> 23.57kb (4.53%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/19.accumulate_velocity.png -- 4.56kb -> 4.36kb (4.45%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/09. weight_decay.png -- 5.63kb -> 5.38kb (4.41%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/before_after_ev.png -- 41.55kb -> 39.72kb (4.4%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/54.Undirected_graph_2.png -- 8.92kb -> 8.53kb (4.38%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generator_discriminator_loss.png -- 19.07kb -> 18.29kb (4.13%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/45.batch_transformation.png -- 21.76kb -> 20.91kb (3.9%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/28.momentum_update_adam.png -- 12.73kb -> 12.23kb (3.86%)
/Chapter-wise code/images/octopus.jpg -- 90.07kb -> 86.62kb (3.83%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/trace_comm.png -- 7.81kb -> 7.51kb (3.81%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/46.param_tying_02.png -- 9.02kb -> 8.70kb (3.49%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/47.param_tying_03.png -- 6.69kb -> 6.46kb (3.47%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/16.update.png -- 4.05kb -> 3.92kb (3.44%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/55.OOB_2.png -- 11.06kb -> 10.68kb (3.37%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/58.dropout_modelling_00'.png -- 123.91kb -> 119.80kb (3.32%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/split_2_points.png -- 57.26kb -> 55.37kb (3.31%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/46. softmax_classifictaion_problem.png -- 62.86kb -> 60.78kb (3.3%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/37.peturbed_model.png -- 1.36kb -> 1.32kb (3.29%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/24.update_adagrad.png -- 13.14kb -> 12.71kb (3.21%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/29.bias_update_adam.png -- 27.79kb -> 26.90kb (3.2%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/43.Hard_MTL.png -- 33.13kb -> 32.11kb (3.07%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/3. zero notebook instances.png -- 53.90kb -> 52.34kb (2.9%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/11.doubly_circulant_matrix.png -- 85.16kb -> 82.71kb (2.88%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/50.bagging_2.png -- 12.58kb -> 12.22kb (2.84%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/4. name your notebook.png -- 105.44kb -> 102.46kb (2.83%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/05.l2_weight_update.png -- 3.50kb -> 3.41kb (2.81%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/06.saddle_point.png -- 71.64kb -> 69.68kb (2.74%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/mpr_formula.png -- 5.24kb -> 5.11kb (2.48%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/46.KL_properties.png -- 5.40kb -> 5.27kb (2.39%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/01.convolution_operation.png -- 21.34kb -> 20.84kb (2.33%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/regression.png -- 1.14kb -> 1.12kb (1.8%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/53.Undirected_graph.png -- 18.18kb -> 17.88kb (1.66%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/48.Structured_probability.png -- 6.30kb -> 6.20kb (1.58%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/Selection_098.png -- 1.69kb -> 1.66kb (1.5%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_l2_regularization.png -- 90.91kb -> 89.72kb (1.31%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/10.curculant_matrix.png -- 64.44kb -> 63.63kb (1.27%)
/Chapter-wise notes/Ch_1_Linear_algebra/images/dot_product.png -- 4.47kb -> 4.42kb (1.2%)
/Chapter-wise code/images/hockney.jpg -- 18.31kb -> 18.11kb (1.1%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/53.bagging_examples.png -- 35.56kb -> 35.20kb (1.01%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/50.Directed_graph_2.png -- 19.66kb -> 19.50kb (0.82%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/l1_vs_l2.png -- 64.39kb -> 63.95kb (0.68%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/48.param_tying_04.png -- 50.73kb -> 50.39kb (0.67%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/13.comparison_sparse_interactions.png -- 155.61kb -> 154.69kb (0.59%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/Image-to-Image Translation via Cyclic GANs/images/sample-004000-summer2winter.png -- 934.39kb -> 930.58kb (0.41%)
/Chapter-wise code/images/target.png -- 366.91kb -> 365.87kb (0.28%)
/Chapter-wise notes/Ch_2_Probability_and_Information_Theorey/images/51.Directed_graph_3.png -- 9.33kb -> 9.30kb (0.28%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/summer_to_winter.png -- 527.83kb -> 526.52kb (0.25%)
/Chapter-wise code/images/target_octopus.png -- 233.01kb -> 232.43kb (0.25%)
/Chapter-wise code/images/style_purva.png -- 349.62kb -> 348.80kb (0.23%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/3. Cyclic GANs/images/winter_to_summer.png -- 504.69kb -> 503.56kb (0.23%)
/Chapter-wise notes/Ch_7_Optimization_for_training_deep_models/images/03.batch_vs_minibatch.png -- 305.47kb -> 305.06kb (0.13%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/17. effect_of_ratio.png -- 446.70kb -> 446.22kb (0.11%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth_2.png -- 121.01kb -> 120.89kb (0.1%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/39.noise_robustness.png -- 238.78kb -> 238.54kb (0.1%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/07. lstm_basics_3.png -- 108.09kb -> 107.99kb (0.09%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/images/lstm_rnn_architecture.png -- 94.24kb -> 94.16kb (0.09%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/02. RNN.png -- 129.56kb -> 129.45kb (0.08%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/03. CNNs'.png -- 120.82kb -> 120.73kb (0.07%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/05. lstm_basics_1.png -- 76.29kb -> 76.24kb (0.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/59. grad_desc.png -- 85.23kb -> 85.18kb (0.06%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/55. mount_err_5.png -- 66.65kb -> 66.61kb (0.06%)
/Chapter-wise notes/Ch_8_Convolutional_Neural_Networks/images/style_transfer/02.content_and_style_image.png -- 199.24kb -> 199.13kb (0.06%)
/Chapter-wise code/Code - PyTorch/2. Convolution Neural Networks/img/02. MLP.png -- 118.47kb -> 118.41kb (0.05%)
/Chapter-wise code/Code - PyTorch/5. Deploy Models to PROD via Amazon Sagemaker/images/machine_learning_workflow.png -- 72.92kb -> 72.89kb (0.05%)
/Chapter-wise code/Code - PyTorch/4. Generative Adversarial Networks (GANs)/4. Generate Faces via DCGAN/images/generated_faces.png -- 111.66kb -> 111.62kb (0.04%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/momentum.png -- 98.54kb -> 98.51kb (0.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/44.param_sharing_for_CNN.png -- 260.12kb -> 260.03kb (0.03%)
/Chapter-wise notes/Ch_5_Deep_Forward_Networks/images/53. mount_err_3.png -- 59.60kb -> 59.58kb (0.03%)
/Chapter-wise notes/Ch_4_Machine_Learning_Basics/images/nn_over_and_under_fitting.png -- 175.95kb -> 175.90kb (0.03%)
/Chapter-wise code/Code - PyTorch/3. Recurrent Neural Networks/6. Attention/images/decoder_depth.png -- 101.60kb -> 101.57kb (0.03%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/predicts_split_2_points.png -- 141.95kb -> 141.92kb (0.02%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/14. remember_gate.png -- 92.04kb -> 92.02kb (0.01%)
/Chapter-wise notes/Ch_6_Regularization_for_Deep_Learning/images/34.data_augmentation.png -- 194.98kb -> 194.96kb (0.01%)
/Chapter-wise notes/Ch_9_Recurrent_Neural_Networks/images/06. lstm_basics_2.png -- 97.61kb -> 97.61kb (0%)

Signed-off-by: ImgBotApp <ImgBotHelp@gmail.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant