Skip to content

Latest commit

 

History

History
executable file
·
104 lines (77 loc) · 4.01 KB

README.md

File metadata and controls

executable file
·
104 lines (77 loc) · 4.01 KB

tweet-norm-es: Spanish Tweet Normalization

Our system for the Tweet-Norm 2013 competition, which we later improved for the paper in Ruiz, Cuadros, Etchegoyhen (2014). (See complete references at the end).

Requires

Running

Preferred: from Python shell. Options can be specified in tnconfig.py, but some of the settings in that file can be modified with command line options when calling the program (we'll expose more options in the CLI in the future).

>>> import sys
>>> sys.argv = [""]
>>> execfile("/path/to/tweet-norm-es/twenor/processing.py")
# If using command line arguments instead of tnconfig.py


Usage: processing.py [-h] [-t] [-c COMMENT]

optional arguments:
  -h, --help            show this help message and exit
  -t, --tag             tag with FreeLing
  -c COMMENT, --comment COMMENT
                        comment for run (shown in cumulog.txt)

#COMMAND_LINE OPTIONS BELOW HERE NOT YET FUNCTIONAL (set them in config/tnconfig.py)
  -b, --baseline        baseline run: accept all OOV
  -x MAXDISTA, --maxdista MAXDISTA
                        maximum edit distance above which candidate is
                        filtered
  -d DISTAW, --distaw DISTAW
                        weight for edit-distance scores
  -l LMW, --lmw LMW     weight for language model scores
  -p LMPATH, --lmpath LMPATH
                        path to Arpa file for language model
  -w LM_WINDOW, --lm_window LM_WINDOW
                        left-window for context lookup in language model

E.g.
>>> sys.argv = ["", "--comment", "test Freeling tagging", "--tag"]
>>> execfile("/path/to/tnor2/twenor/processing.py")

Also from command line:

python /path/to/tweet-norm-es/twenor/processing.py

Project Structure

tweet-norm-es
 |_ config
    |_ tnconfig.py              Config file
 |_ scripts
    |_ neweval.py               Tweet-Norm workshop's evaluation script
 |_ twenor
    |_ preparation.py           Common preparation functions
    |_ freelmgr.py              Freeling Analyzer calls
    |_ twittero.py              Basic tweet analysis objects: Tweet, Token, OOV, ...
    |_ preprocessing.py         OOV preprocessing with regexes and lists
    |_ editor.py                Candidate Generation and Distance-Scoring
    |_ lmmgr.py                 Language Model creation, candidate lookup and scoring
    |_ postprocessing.py        Recasing
    |_ entities.py              Form lookup in entity resources
    |_ processing.py            Main program
    |_ network.py               Combination network to generate all candidate combinations for a tweet
    |_ global_lm_scorer.py      Applies candidate-combination network
 |_ data                        Regex lists, entity lists, correction model data, LMs etc.
 |_ evaluation
    |_ dev                      devset texts and annotations
    |_ eval                     test-set texts and annotations

System Architecture

System Architecture

Publications