-
Notifications
You must be signed in to change notification settings - Fork 5
/
GFG_TopologicalSort.cpp
141 lines (104 loc) · 3.08 KB
/
GFG_TopologicalSort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* https://practice.geeksforgeeks.org/problems/topological-sort/1#
* Given a Directed Acyclic Graph (DAG) with V vertices and E edges, Find any Topological Sorting of that Graph.
*/
// { Driver Code Starts
#include <bits/stdc++.h>
using namespace std;
// } Driver Code Ends
class Solution
{
public:
void DFS_TOP(int src, vector<int> adj[], vector<bool> &vis, vector<int> &o){
vis[src]=true;
for(int w: adj[src]){
if(!vis[w])
DFS_TOP(w, adj, vis, o);
}//for adj
o.push_back(src);
}//DFS
//Function to return list containing vertices in Topological order.
vector<int> topoSort1(int V, vector<int> adj[])
{
vector<bool> visited(V,false);
vector<int> order;
//USING DFS + Vector
for(int v=0; v<V; ++v){ //for disconnected graph
if(!visited[v])
DFS_TOP(v, adj, visited, order);
}//for v
reverse(order.begin(), order.end());
return order;
} //topoSort
// Kahn's Algorithm for Topological Sort
vector<int> topoSort(int V, vector<int> adj[])
{
// vector<bool> visited(V,false);
vector<int> ind(V,0); //indegree of each vertex
vector<int> order; // topological order
queue<int> q;
int cnt_vis = 0; // Initialize count of visited vertices
//Calculating Indegree of Each Node
for(int v=0; v<V; ++v){
for(int w: adj[v]){
ind[w]++;
}//for adj
}//for v
// enqueue all vertices with indegree 0
for(int v=0; v<V; v++)
if(ind[v]==0)
q.push(v);
while(!q.empty()){
int x = q.front(); q.pop();
order.push_back(x);
cnt_vis++;
for(int w: adj[x])
if(--ind[w] == 0)
q.push(w);
}//while q
// Check if there was a cycle
// if (cnt_vis != V) {
// cout << "There exists a cycle in the graph\n";
// return;
// }
return order;
} //topoSort
};
// { Driver Code Starts.
/* Function to check if elements returned by user
* contains the elements in topological sorted form
* V: number of vertices
* *res: array containing elements in topological sorted form
* adj[]: graph input
*/
int check(int V, vector <int> &res, vector<int> adj[]) {
if(V!=res.size())
return 0;
vector<int> map(V, -1);
for (int i = 0; i < V; i++) {
map[res[i]] = i;
}
for (int i = 0; i < V; i++) {
for (int v : adj[i]) {
if (map[i] > map[v]) return 0;
}
}
return 1;
}
int main() {
int T;
cin >> T;
while (T--) {
int N, E;
cin >> E >> N;
int u, v;
vector<int> adj[N];
for (int i = 0; i < E; i++) {
cin >> u >> v;
adj[u].push_back(v);
}
Solution obj;
vector <int> res = obj.topoSort(N, adj);
cout << check(N, res, adj) << endl;
}
return 0;
} // } Driver Code Ends