-
Notifications
You must be signed in to change notification settings - Fork 5
/
GFG_MST.cpp
93 lines (76 loc) · 2.13 KB
/
GFG_MST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
https://practice.geeksforgeeks.org/problems/minimum-spanning-tree/1#
Minimum Spanning Tree
*/
// { Driver Code Starts
#include<bits/stdc++.h>
using namespace std;
// } Driver Code Ends
class Solution
{
public:
//Function to find sum of weights of edges of the Minimum Spanning Tree.
int spanningTree(int V, vector<vector<int>> adj[])
{
int sum_wgt=0;
vector<int> parent(V, -1); // parent of each node;
vector<int> weights(V,INT_MAX); // weights of each node;
vector<bool> isMst(V, false);
// include first vertex into the mst
weights[0] = 0;
parent[0] = -1;
priority_queue<pair<int,int>, vector<pair<int,int>>, greater<pair<int,int>>> pq;
// pair {wgt, node};
pq.push({weights[0],0});
while(!pq.empty())
{
int e = pq.top().second; pq.pop();
isMst[e] = true;
// sum_wgt += weights[e];
for(const auto& w : adj[e])
{
int adjNode = w[0];
int wgt = w[1];
if(!isMst[adjNode] && wgt < weights[adjNode])
{
parent[adjNode] = e;
weights[adjNode] = wgt;
pq.push({weights[adjNode], adjNode});
}
}
}// while
for(int v=0; v<V; v++)
{
if(weights[v]!=INT_MAX)
sum_wgt += weights[v];
}
return sum_wgt;
}// end
};
// { Driver Code Starts.
int main()
{
int t;
cin >> t;
while (t--) {
int V, E;
cin >> V >> E;
vector<vector<int>> adj[V];
int i=0;
while (i++<E) {
int u, v, w;
cin >> u >> v >> w;
vector<int> t1,t2;
t1.push_back(v);
t1.push_back(w);
adj[u].push_back(t1);
t2.push_back(u);
t2.push_back(w);
adj[v].push_back(t2);
}
Solution obj;
cout << obj.spanningTree(V, adj) << "\n";
}
return 0;
}
// } Driver Code Ends