From f695f333d3c422fe7c48c033a10a822aa5abe809 Mon Sep 17 00:00:00 2001 From: "Prashant K. Jha" Date: Thu, 17 Oct 2024 20:24:28 -0600 Subject: [PATCH] fix pdf compile error --- docs/joss/paper.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/joss/paper.md b/docs/joss/paper.md index 6a65f2bf..f8fec6c5 100644 --- a/docs/joss/paper.md +++ b/docs/joss/paper.md @@ -56,7 +56,7 @@ where ${\rho}^{(p)}$, ${\boldsymbol{f}}^{(p)}_{int}$, and ${\boldsymbol{f}}^{(p) Since all expressions in this paragraph are for a fixed particle $p$, we drop the superscript $p$, noting that material properties and other quantities can depend on the particle $p$. Following [@silling2007peridynamic] and simplified expression of state-based peridynamics force in [@jha2021peridynamics], the internal force takes the form, for $\boldsymbol{X} \in {\Omega}^{(p)}_0$, \begin{equation} - {\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) = \int_{B_{\epsilon}(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} \left( \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X}) \right) \, \dd \boldsymbol{Y}\,, + {\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) = \int_{B_{\epsilon}(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} \left( \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X}) \right) \, \mathrm{d} \boldsymbol{Y}\,, \end{equation} where $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X})$ is the force on $\boldsymbol{X}$ due to nonlocal interaction with $\boldsymbol{Y}$. Let $R = |\boldsymbol{Y} - \boldsymbol{X}|$ be the reference bond length, $r = |\boldsymbol{x}(\boldsymbol{Y}) - \boldsymbol{x}(\boldsymbol{X})|$ current bond length, $s(\boldsymbol{Y}, \boldsymbol{X}) = (r - R)/R$ bond strain, then $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y})$ is given by [@silling2007peridynamic, @jha2021peridynamics] \begin{equation} @@ -65,8 +65,8 @@ where $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsy where \begin{equation} \begin{split} - m_{\boldsymbol{X}} &= \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} R^2 J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\ - \theta_{\boldsymbol{X}} &= h(s) \frac{3}{m_{\boldsymbol{X}}} \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} (r - R) \, R \, J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\ + m_{\boldsymbol{X}} &= \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} R^2 J(R/\epsilon) \, \mathrm{d} \boldsymbol{Y}\,,\\ + \theta_{\boldsymbol{X}} &= h(s) \frac{3}{m_{\boldsymbol{X}}} \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} (r - R) \, R \, J(R/\epsilon) \, \mathrm{d} \boldsymbol{Y}\,,\\ h(s) &= \begin{cases} 1\,, &\qquad \text{if } s < s_0 := \sqrt{\frac{\mathcal{G}_c}{\left(3 G + (3/4)^4 \left[\kappa - 5G/3\right]\right)\epsilon}}\,, \\ 0\,, & \qquad \text{otherwise}\,. @@ -90,7 +90,7 @@ where $\boldsymbol{b}$ is body force per unit mass, $\boldsymbol{f}^{\Omega_0, ( \end{equation} Then the force on particle $p$ due to contact with particle $q$ can be written as [@jha2021peridynamics}]: \begin{equation} - {\boldsymbol{f}}^{(q),(p)} (\boldsymbol{X}, t) = \int_{\boldsymbol{Y} \in {\Omega}^{(q)}_0 \cap B_{{R}^{(q),(p)}}(\boldsymbol{X})} \left( {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) \right)\, \dd \boldsymbol{Y}\,, + {\boldsymbol{f}}^{(q),(p)} (\boldsymbol{X}, t) = \int_{\boldsymbol{Y} \in {\Omega}^{(q)}_0 \cap B_{{R}^{(q),(p)}}(\boldsymbol{X})} \left( {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) \right)\, \mathrm{d} \boldsymbol{Y}\,, \end{equation} with normal and tangential forces following [@jha2021peridynamics, @desai2019rheometry] given by \begin{equation}