diff --git a/docs/joss/paper.md b/docs/joss/paper.md index 338397c9..6a65f2bf 100644 --- a/docs/joss/paper.md +++ b/docs/joss/paper.md @@ -12,10 +12,6 @@ authors: - name: Prashant Kumar Jha orcid: 0000-0003-2158-364X affiliation: 1 -output: - bookdown::pdf_document: - includes: - in_header: preamble.tex affiliations: - name: Department of Mechanical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA index: 1 @@ -41,7 +37,7 @@ PeriDEM model was introduced in [@jha2021peridynamics], where it demonstrated th ## Brief Introduction to PeriDEM Model ![Motion of particle system.\label{fig:schemMultiParticles}](./files/multi-particle.png) -Suppose a fixed frame of reference and $\{\be_i\}_{i=1}^d$ are orthonormal bases. Consider a collection of $N_P$ particles $\Pscript{\Omega}{p}_0$, $1\leq p \leq N_P$, where $\Pscript{\Omega}{p}_0 \subset \bbR^d$ with $d=2,3$ represents the initial configuration of particle $p$. Suppose $\Omega_0 \supset \cup_{p=1}^{N_P} \Pscript{\Omega}{p}_0$ is the domain containing all particles; see \autoref{fig:schemMultiParticles}. The particles in $\Omega_0$ are dynamically evolving due to external boundary conditions and internal interactions; let $\Pscript{\Omega}{p}_t$ denote the configuration of particle $p$ at time $t\in (0, t_F]$, and $\Omega_t \supset \cup_{p=1}^{N_P} \Pscript{\Omega}{p}_t$ domain containing all particles at that time. The motion $\Pscript{\bx}{p} = \Pscript{\bx}{p}(\Pscript{\bX}{p}, t)$ takes point $\Pscript{\bX}{p}\in \Pscript{\Omega}{p}_0$ to $\Pscript{\bx}{p}\in \Pscript{\Omega}{p}_t$, and collectively, the motion is given by $\bx = \bx(\bX, t) \in \Omega_t$ for $\bX \in \Omega_0$. We assume the media is dry and not influenced by factors other than mechanical loading (e.g., moisture and temperature are not considered). The configuration of particles in $\Omega_t$ at time $t$ depends on various factors, such as material and geometrical properties, contact mechanism, and external loading. +Suppose a fixed frame of reference and $\{\boldsymbol{e}_i\}_{i=1}^d$ are orthonormal bases. Consider a collection of $N_P$ particles ${\Omega}^{(p)}_0$, $1\leq p \leq N_P$, where ${\Omega}^{(p)}_0 \subset \mathbb{R}^d$ with $d=2,3$ represents the initial configuration of particle $p$. Suppose $\Omega_0 \supset \cup_{p=1}^{N_P} {\Omega}^{(p)}_0$ is the domain containing all particles; see \autoref{fig:schemMultiParticles}. The particles in $\Omega_0$ are dynamically evolving due to external boundary conditions and internal interactions; let ${\Omega}^{(p)}_t$ denote the configuration of particle $p$ at time $t\in (0, t_F]$, and $\Omega_t \supset \cup_{p=1}^{N_P} {\Omega}^{(p)}_t$ domain containing all particles at that time. The motion ${\boldsymbol{x}}^{(p)} = {\boldsymbol{x}}^{(p)}({\boldsymbol{X}}^{(p)}, t)$ takes point ${\boldsymbol{X}}^{(p)}\in {\Omega}^{(p)}_0$ to ${\boldsymbol{x}}^{(p)}\in {\Omega}^{(p)}_t$, and collectively, the motion is given by $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{X}, t) \in \Omega_t$ for $\boldsymbol{X} \in \Omega_0$. We assume the media is dry and not influenced by factors other than mechanical loading (e.g., moisture and temperature are not considered). The configuration of particles in $\Omega_t$ at time $t$ depends on various factors, such as material and geometrical properties, contact mechanism, and external loading. Essentially, there are two types of interactions present in the media: \begin{itemize} \item[(1.)] {\it Intra-particle interaction} that models the deformation and internal forces in the particle and @@ -51,61 +47,61 @@ In DEM, the first interaction is ignored, assuming particle deformation is insig The balance of linear momentum for particle $p$, $1\leq p\leq N_P$, takes the form: \begin{equation} - \Pscript{\rho}{p} \Pscript{\ddot{\bu}}{p}(\bX, t) = \Pscript{\bff}{p}_{int}(\bX, t) + \Pscript{\bff}{p}_{ext}(\bX, t), \qquad \forall (\bX, t) \in \Pscript{\Omega}{p}_0 \times (0, t_F)\,, + {\rho}^{(p)} {\ddot{\boldsymbol{u}}}^{(p)}(\boldsymbol{X}, t) = {\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) + {\boldsymbol{f}}^{(p)}_{ext}(\boldsymbol{X}, t), \qquad \forall (\boldsymbol{X}, t) \in {\Omega}^{(p)}_0 \times (0, t_F)\,, \end{equation} -where $\Pscript{\rho}{p}$, $\Pscript{\bff}{p}_{int}$, and $\Pscript{\bff}{p}_{ext}$ are density, and internal and external force densities. The above equation is complemented with initial conditions, $\Pscript{\bu}{p}(\bX, 0) = \Pscript{\bu}{p}_0(\bX), \Pscript{\dot{\bu}}{p}(\bX, 0) = \Pscript{\dot{\bu}}{p}_0(\bX), \bX \in \Pscript{\Omega}{p}_0$. +where ${\rho}^{(p)}$, ${\boldsymbol{f}}^{(p)}_{int}$, and ${\boldsymbol{f}}^{(p)}_{ext}$ are density, and internal and external force densities. The above equation is complemented with initial conditions, ${\boldsymbol{u}}^{(p)}(\boldsymbol{X}, 0) = {\boldsymbol{u}}^{(p)}_0(\boldsymbol{X}), {\dot{\boldsymbol{u}}}^{(p)}(\boldsymbol{X}, 0) = {\dot{\boldsymbol{u}}}^{(p)}_0(\boldsymbol{X}), \boldsymbol{X} \in {\Omega}^{(p)}_0$. ### Internal force - State-based peridynamics Since all expressions in this paragraph are for a fixed particle $p$, we drop the superscript $p$, noting that material properties and other quantities can depend on the particle $p$. -Following [@silling2007peridynamic] and simplified expression of state-based peridynamics force in [@jha2021peridynamics], the internal force takes the form, for $\bX \in \Pscript{\Omega}{p}_0$, +Following [@silling2007peridynamic] and simplified expression of state-based peridynamics force in [@jha2021peridynamics], the internal force takes the form, for $\boldsymbol{X} \in {\Omega}^{(p)}_0$, \begin{equation} - \Pscript{\bff}{p}_{int}(\bX, t) = \int_{B_{\epsilon}(\bX) \cap \Pscript{\Omega}{p}_0} \left( \bT_{\bX}(\bY) - \bT_{\bY}(\bX) \right) \, \dd \bY\,, + {\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) = \int_{B_{\epsilon}(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} \left( \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X}) \right) \, \dd \boldsymbol{Y}\,, \end{equation} -where $\bT_{\bX}(\bY) - \bT_{\bY}(\bX)$ is the force on $\bX$ due to nonlocal interaction with $\bY$. Let $R = |\bY - \bX|$ be the reference bond length, $r = |\bx(\bY) - \bx(\bX)|$ current bond length, $s(\bY, \bX) = (r - R)/R$ bond strain, then $\bT_{\bX}(\bY)$ is given by \cite{silling2007peridynamic, jha2021peridynamics} +where $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X})$ is the force on $\boldsymbol{X}$ due to nonlocal interaction with $\boldsymbol{Y}$. Let $R = |\boldsymbol{Y} - \boldsymbol{X}|$ be the reference bond length, $r = |\boldsymbol{x}(\boldsymbol{Y}) - \boldsymbol{x}(\boldsymbol{X})|$ current bond length, $s(\boldsymbol{Y}, \boldsymbol{X}) = (r - R)/R$ bond strain, then $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y})$ is given by [@silling2007peridynamic, @jha2021peridynamics] \begin{equation} - \bT_{\bX}(\bY) = h(s) J(R/\epsilon)\, \left[R \theta_{\bX} \left(\frac{3\kappa}{m_{\bX}} - \frac{15 G}{3 m_{\bx}}\right) + (r - R) \frac{15 G}{m_{\bX}}\right] \frac{\bx(\bY) - \bx(\bX)}{|\bx(\bY) - \bx(\bX)|}\,, + \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) = h(s) J(R/\epsilon)\, \left[R \theta_{\boldsymbol{X}} \left(\frac{3\kappa}{m_{\boldsymbol{X}}} - \frac{15 G}{3 m_{\boldsymbol{X}}}\right) + (r - R) \frac{15 G}{m_{\boldsymbol{X}}}\right] \frac{\boldsymbol{x}(\boldsymbol{Y}) - \boldsymbol{x}(\boldsymbol{X})}{|\boldsymbol{x}(\boldsymbol{Y}) - \boldsymbol{x}(\boldsymbol{X})|}\,, \end{equation} where \begin{equation} \begin{split} - m_{\bX} &= \int_{B_\epsilon(\bX) \cap \Pscript{\Omega}{p}_0} R^2 J(R/\epsilon) \, \dd \bY\,,\\ - \theta_{\bX} &= h(s) \frac{3}{m_{\bX}} \int_{B_\epsilon(\bX) \cap \Pscript{\Omega}{p}_0} (r - R) \, R \, J(R/\epsilon) \, \dd \bY\,,\\ + m_{\boldsymbol{X}} &= \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} R^2 J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\ + \theta_{\boldsymbol{X}} &= h(s) \frac{3}{m_{\boldsymbol{X}}} \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} (r - R) \, R \, J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\ h(s) &= \begin{cases} - 1\,, &\qquad \text{if } s < s_0 := \sqrt{\frac{\calG_c}{\left(3 G + (3/4)^4 \left[\kappa - 5G/3\right]\right)\epsilon}}\,, \\ + 1\,, &\qquad \text{if } s < s_0 := \sqrt{\frac{\mathcal{G}_c}{\left(3 G + (3/4)^4 \left[\kappa - 5G/3\right]\right)\epsilon}}\,, \\ 0\,, & \qquad \text{otherwise}\,. \end{cases} \end{split} \end{equation} -In the above, $J: [0, \infty) \to \bbR$ is the influence function, $\kappa, G, \calG_c$ are bulk and shear moduli and critical energy release rate, respectively. These parameters, including nonlocal length scale $\epsilon$, could depend on the particle $p$. +In the above, $J: [0, \infty) \to \mathbb{R}$ is the influence function, $\kappa, G, \mathcal{G}_c$ are bulk and shear moduli and critical energy release rate, respectively. These parameters, including nonlocal length scale $\epsilon$, could depend on the particle $p$. ### DEM-inspired contact forces -The external force density $\Pscript{\bff}{p}_{ext}$ is generally expressed as +The external force density ${\boldsymbol{f}}^{(p)}_{ext}$ is generally expressed as \begin{equation} - \Pscript{\bff}{p}_{ext} = \Pscript{\rho}{p}\bb + \bff^{\Omega_0, (p)} + \sum_{q\neq p} \PQscript{\bff}{q}{p}\,, + {\boldsymbol{f}}^{(p)}_{ext} = {\rho}^{(p)}\boldsymbol{b} + \boldsymbol{f}^{\Omega_0, (p)} + \sum_{q\neq p} {\boldsymbol{f}}^{(q),(p)}\,, \end{equation} -where $\bb$ is body force per unit mass, $\bff^{\Omega_0, (p)}$ and $\PQscript{\bff}{q}{p}$ are contact forces due to interaction between particle $p$ and container $\Omega_0$ and neighboring particles $q$, respectively. In \citenb{jha2021peridynamics, jha2024peridynamics}, the contact between two particles is applied locally where the contact takes place; this is exemplified in \autoref{fig:peridemContact} where contact between points $\by$ and $\bx$ of two distinct particles $p$ and $q$ is activated when they get sufficiently close. The contact forces are shown using a spring-dashpot-slider system. To fix the contact forces, consider a point $\bX\in \Pscript{\Omega}{p}_0$ and let $\PQscript{R}{q}{p}_c$ be the critical contact radius (points in particles $p$ and $q$ interact if the distance is below this critical distance). Further, define the relative distance between two points $\bY \in \Pscript{\Omega}{q}_0$ and $\bX \in \Pscript{\Omega}{p}$ and normal and tangential directions as follows: +where $\boldsymbol{b}$ is body force per unit mass, $\boldsymbol{f}^{\Omega_0, (p)}$ and ${\boldsymbol{f}}^{(q),(p)}$ are contact forces due to interaction between particle $p$ and container $\Omega_0$ and neighboring particles $q$, respectively. In [@jha2021peridynamics, @jha2024peridynamics], the contact between two particles is applied locally where the contact takes place; this is exemplified in \autoref{fig:peridemContact} where contact between points $\boldsymbol{y}$ and $\boldsymbol{x}$ of two distinct particles $p$ and $q$ is activated when they get sufficiently close. The contact forces are shown using a spring-dashpot-slider system. To fix the contact forces, consider a point $\boldsymbol{X}\in {\Omega}^{(p)}_0$ and let ${R}^{(q),(p)}_c$ be the critical contact radius (points in particles $p$ and $q$ interact if the distance is below this critical distance). Further, define the relative distance between two points $\boldsymbol{Y} \in {\Omega}^{(q)}_0$ and $\boldsymbol{X} \in {\Omega}^{(p)}$ and normal and tangential directions as follows: \begin{equation} \begin{split} - \PQscript{\Delta}{q}{p}(\bY, \bX) &= \vert \Pscript{\bx}{q}(\bY) - \Pscript{\bx}{p}(\bX) \vert - \PQscript{R}{q}{p}_c\,, \\ - \PQscript{\be}{q}{p}_N(\bY, \bX) &= \frac{\Pscript{\bx}{q}(\bY) - \Pscript{\bx}{p}(\bX)}{\vert \Pscript{\bx}{q}(\bY) - \Pscript{\bx}{p}(\bX) \vert}\,, \\ - \PQscript{\be}{q}{p}_T(\bY, \bX) &= \left[ \bI - \PQscript{\be}{q}{p}_N(\bY, \bX) \otimes \PQscript{\be}{q}{p}_N(\bY, \bX) \right]\frac{\Pscript{\dot{\bx}}{q}(\bY) - \Pscript{\dot{\bx}}{p}(\bX)}{\vert \Pscript{\dot{\bx}}{q}(\bY) - \Pscript{\dot{\bx}}{p}(\bX) \vert} \,. + {\Delta}^{(q),(p)}(\boldsymbol{Y}, \boldsymbol{X}) &= \vert {\boldsymbol{x}}^{(q)}(\boldsymbol{Y}) - {\boldsymbol{x}}^{(p)}(\boldsymbol{X}) \vert - {R}^{(q),(p)}_c\,, \\ + {\boldsymbol{e}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) &= \frac{{\boldsymbol{x}}^{(q)}(\boldsymbol{Y}) - {\boldsymbol{x}}^{(p)}(\boldsymbol{X})}{\vert {\boldsymbol{x}}^{(q)}(\boldsymbol{Y}) - {\boldsymbol{x}}^{(p)}(\boldsymbol{X}) \vert}\,, \\ + {\boldsymbol{e}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) &= \left[ \boldsymbol{I} - {\boldsymbol{e}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) \otimes {\boldsymbol{e}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) \right]\frac{{\dot{\boldsymbol{x}}}^{(q)}(\boldsymbol{Y}) - {\dot{\boldsymbol{x}}}^{(p)}(\boldsymbol{X})}{\vert {\dot{\boldsymbol{x}}}^{(q)}(\boldsymbol{Y}) - {\dot{\boldsymbol{x}}}^{(p)}(\boldsymbol{X}) \vert} \,. \end{split} \end{equation} -Then the force on particle $p$ due to contact with particle $q$ can be written as \cite{jha2021peridynamics}: +Then the force on particle $p$ due to contact with particle $q$ can be written as [@jha2021peridynamics}]: \begin{equation} - \PQscript{\bff}{q}{p} (\bX, t) = \int_{\bY \in \Pscript{\Omega}{q}_0 \cap B_{\PQscript{R}{q}{p}}(\bX)} \left( \PQscript{\bff}{q}{p}_N(\bY, \bX) + \PQscript{\bff}{q}{p}_T(\bY, \bX) \right)\, \dd \bY\,, + {\boldsymbol{f}}^{(q),(p)} (\boldsymbol{X}, t) = \int_{\boldsymbol{Y} \in {\Omega}^{(q)}_0 \cap B_{{R}^{(q),(p)}}(\boldsymbol{X})} \left( {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) \right)\, \dd \boldsymbol{Y}\,, \end{equation} -with normal and tangential forces following \citenb{jha2021peridynamics, desai2019rheometry} given by +with normal and tangential forces following [@jha2021peridynamics, @desai2019rheometry] given by \begin{equation} - \PQscript{\bff}{q}{p}_N(\bY, \bX) = \begin{cases} - 0\,, & \quad \text{if } \PQscript{\Delta}{q}{p}(\bY, \bX) \geq 0\,, \\ - \left[ \PQscript{\kappa}{q}{p}_N \PQscript{\Delta}{q}{p}(\bY, \bX) - \PQscript{\beta}{q}{p}_N \PQscript{\dot{\Delta}}{q}{p}(\bY, \bX) \right] \PQscript{\be}{q}{p}_N\,, & \quad \text{otherwise}\,, + {\bff}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) = \begin{cases} + 0\,, & \quad \text{if } {\Delta}^{(q),(p)}(\boldsymbol{Y}, \boldsymbol{X}) \geq 0\,, \\ + \left[ {\kappa}^{(q),(p)}_N {\Delta}^{(q),(p)}(\boldsymbol{Y}, \boldsymbol{X}) - {\beta}^{(q),(p)}_N {\dot{\Delta}}^{(q),(p)}(\boldsymbol{Y}, \boldsymbol{X}) \right] {\boldsymbol{e}}^{(q),(p)}_N\,, & \quad \text{otherwise}\,, \end{cases} \end{equation} and \begin{equation} - \PQscript{\bff}{q}{p}_T(\bY, \bX) = -\PQscript{\mu}{q}{p}_T \, \vert \PQscript{\bff}{q}{p}_N(\bY, \bX) \vert\, \PQscript{\be}{q}{p}_T\,. + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) = -{\mu}^{(q),(p)}_T \, \vert {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) \vert\, {\boldsymbol{e}}^{(q),(p)}_T\,. \end{equation} # Implementation diff --git a/docs/joss/preamble.tex b/docs/joss/preamble.tex deleted file mode 100644 index 36c80bcf..00000000 --- a/docs/joss/preamble.tex +++ /dev/null @@ -1,178 +0,0 @@ -%-------------------------------------------------------------------------% -% math symbols -%-------------------------------------------------------------------------% -\usepackage{amsfonts,amssymb,amsmath,amsopn,float} -\usepackage{mathrsfs} -\usepackage{bm} - -\newcommand{\norm}[1]{\left\lVert #1 \right\rVert} -\newcommand*\widefbox[1]{\fbox{\hspace{1em}#1\hspace{1em}}} -\newcommand{\lap}{\Delta} -\newcommand{\grad}{\nabla} -\newcommand{\divrg}{\nabla\cdot} -\newcommand{\identity}{\textbf{\textrm{Id}}} -\newcommand{\eqdistr}{\stackrel{d}{=}} -\DeclareMathOperator*{\argmin}{arg\,min} -\DeclareMathOperator*{\esssup}{ess\,sup} -\DeclareMathOperator*{\argmax}{arg\,max} -\DeclareMathOperator{\atantwo}{atan2} -\DeclarePairedDelimiter\ceil{\lceil}{\rceil} -\DeclarePairedDelimiter\floor{\lfloor}{\rfloor} - -\newcommand{\noise}{\boldsymbol{N}} -\newcommand{\erf}{\textrm{erf}} -\newcommand{\bdmc}[1]{\boldsymbol{\mathcal{#1}}} -\newcommand{\as}{\text{a.s.}} -\newcommand{\expect}[2]{\mathbb{E}_{#1}\left[#2 \right]} - -%% differentials -\newcommand{\dd}{\,\textup{d}} -\newcommand{\dt}{\,\textup{d}t} -\newcommand{\ds}{\,\textup{d}s} -\newcommand{\dS}{\,\textup{d}S} -\newcommand{\ddt}{\frac{\dd}{\dd t}} - -% bold quantities -\newcommand{\bzero}{\bm{0}} -\newcommand{\bcolon}{\bm{:}} - -\newcommand{\ba}{\bm{a}} -\newcommand{\bb}{\bm{b}} -\newcommand{\bc}{\bm{c}} -\newcommand{\bd}{\bm{d}} -\newcommand{\be}{\bm{e}} -\newcommand{\bff}{\bm{f}} -\newcommand{\bg}{\bm{g}} -\newcommand{\bh}{\bm{h}} -\newcommand{\bi}{\bm{i}} -\newcommand{\bj}{\bm{j}} -\newcommand{\bk}{\bm{k}} -\newcommand{\bl}{\bm{l}} -\newcommand{\bmm}{\bm{m}} -\newcommand{\bn}{\bm{n}} -\newcommand{\bo}{\bm{o}} -\newcommand{\bp}{\bm{p}} -\newcommand{\bq}{\bm{q}} -\newcommand{\br}{\bm{r}} -\newcommand{\bs}{\bm{s}} -\newcommand{\bt}{\bm{t}} -\newcommand{\bu}{\bm{u}} -\newcommand{\bv}{\bm{v}} -\newcommand{\bw}{\bm{w}} -\newcommand{\bx}{\bm{x}} -\newcommand{\by}{\bm{y}} -\newcommand{\bz}{\bm{z}} - -\newcommand{\bA}{\bm{A}} -\newcommand{\bB}{\bm{B}} -\newcommand{\bC}{\bm{C}} -\newcommand{\bD}{\bm{D}} -\newcommand{\bE}{\bm{E}} -\newcommand{\bF}{\bm{F}} -\newcommand{\bG}{\bm{G}} -\newcommand{\bH}{\bm{H}} -\newcommand{\bI}{\bm{I}} -\newcommand{\bJ}{\bm{J}} -\newcommand{\bK}{\bm{K}} -\newcommand{\bL}{\bm{L}} -\newcommand{\bM}{\bm{M}} -\newcommand{\bN}{\bm{N}} -\newcommand{\bO}{\bm{O}} -\newcommand{\bP}{\bm{P}} -\newcommand{\bQ}{\bm{Q}} -\newcommand{\bR}{\bm{R}} -\newcommand{\bS}{\bm{S}} -\newcommand{\bT}{\bm{T}} -\newcommand{\bU}{\bm{U}} -\newcommand{\bV}{\bm{V}} -\newcommand{\bW}{\bm{W}} -\newcommand{\bX}{\bm{X}} -\newcommand{\bY}{\bm{Y}} -\newcommand{\bZ}{\bm{Z}} - -\newcommand{\bxi}{{\bm{\xi}}} -\newcommand{\bchi}{{\bm{\chi}}} -\newcommand{\bphi}{{\bm{\phi}}} -\newcommand{\bmu}{{\bm{\mu}}} -\newcommand{\bPsi}{{\bm{\Psi}}} -\newcommand{\btheta}{\bm{\theta}} -\newcommand{\bomega}{\bm{\omega}} - -%% caligraphic -\newcommand{\calA}{{\mathcal{A}}} -\newcommand{\calB}{{\mathcal{B}}} -\newcommand{\calC}{{\mathcal{C}}} -\newcommand{\calD}{{\mathcal{D}}} -\newcommand{\calE}{{\mathcal{E}}} -\newcommand{\calF}{{\mathcal{F}}} -\newcommand{\calG}{{\mathcal{G}}} -\newcommand{\calH}{{\mathcal{H}}} -\newcommand{\calI}{{\mathcal{I}}} -\newcommand{\calJ}{{\mathcal{J}}} -\newcommand{\calK}{{\mathcal{K}}} -\newcommand{\calL}{{\mathcal{L}}} -\newcommand{\calM}{{\mathcal{M}}} -\newcommand{\calN}{{\mathcal{N}}} -\newcommand{\calO}{{\mathcal{O}}} -\newcommand{\calP}{{\mathcal{P}}} -\newcommand{\calQ}{{\mathcal{Q}}} -\newcommand{\calR}{{\mathcal{R}}} -\newcommand{\calS}{{\mathcal{S}}} -\newcommand{\calT}{{\mathcal{T}}} -\newcommand{\calU}{{\mathcal{U}}} -\newcommand{\calV}{{\mathcal{V}}} -\newcommand{\calW}{{\mathcal{W}}} -\newcommand{\calX}{{\mathcal{X}}} -\newcommand{\calY}{{\mathcal{Y}}} -\newcommand{\calZ}{{\mathcal{Z}}} - -%% mathbb -\newcommand{\bbA}{{\mathbb{A}}} -\newcommand{\bbB}{{\mathbb{B}}} -\newcommand{\bbC}{{\mathbb{C}}} -\newcommand{\bbD}{{\mathbb{D}}} -\newcommand{\bbE}{{\mathbb{E}}} -\newcommand{\bbF}{{\mathbb{F}}} -\newcommand{\bbG}{{\mathbb{G}}} -\newcommand{\bbH}{{\mathbb{H}}} -\newcommand{\bbI}{{\mathbb{I}}} -\newcommand{\bbJ}{{\mathbb{J}}} -\newcommand{\bbK}{{\mathbb{K}}} -\newcommand{\bbL}{{\mathbb{L}}} -\newcommand{\bbM}{{\mathbb{M}}} -\newcommand{\bbN}{{\mathbb{N}}} -\newcommand{\bbO}{{\mathbb{O}}} -\newcommand{\bbP}{{\mathbb{P}}} -\newcommand{\bbQ}{{\mathbb{Q}}} -\newcommand{\bbR}{{\mathbb{R}}} -\newcommand{\bbS}{{\mathbb{S}}} -\newcommand{\bbT}{{\mathbb{T}}} -\newcommand{\bbU}{{\mathbb{U}}} -\newcommand{\bbV}{{\mathbb{V}}} -\newcommand{\bbW}{{\mathbb{W}}} -\newcommand{\bbX}{{\mathbb{X}}} -\newcommand{\bbY}{{\mathbb{Y}}} -\newcommand{\bbZ}{{\mathbb{Z}}} - -%% for mathrm -\newcommand{\rmx}[1]{{\mathrm{#1}}} - -\newcommand{\operator}{\widetilde{\mathcal{F}}} - -\newcommand{\dualDot}[2]{\langle {#1}, {#2}\rangle} - -\newcommand{\hlt}[1]{{\it #1}} - -\newcommand{\Pscript}[2]{{#1}^{(#2)}} -\newcommand{\PQscript}[3]{{#1}^{(#2),(#3)}} -\newcommand{\hatPscript}[2]{\hat{#1}^{(#2)}} -\newcommand{\hatPQscript}[3]{\hat{#1}^{(#2),(#3)}} -\newcommand{\dothatPscript}[2]{\dot{\hat{#1}}^{(#2)}} -\newcommand{\dothatPQscript}[3]{\dot{\hat{#1}}^{(#2),(#3)}} - -\newcommand{\drName}{\mathrm{DR}} -\newcommand{\crName}{\mathrm{CR}} -\newcommand{\drcrName}{\mathrm{DR-CR}} -\newcommand{\drPart}[1]{{#1}^{\drName}} -\newcommand{\crPart}[1]{{#1}^{\crName}} -\newcommand{\drcrPart}[1]{{#1}^{\drcrName}} \ No newline at end of file