-
Notifications
You must be signed in to change notification settings - Fork 1
/
rag.py
110 lines (84 loc) · 3.38 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from typing import List
import PyPDF2
from io import BytesIO
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import (
ConversationalRetrievalChain,
)
#from langchain_community.llms import Ollama
from langchain.docstore.document import Document
from langchain_community.llms import Ollama
from langchain_community.chat_models import ChatOllama
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a pdf file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
print(file)
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
# Read the PDF file
pdf = PyPDF2.PdfReader(file.path)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
# Split the text into chunks
texts = text_splitter.split_text(pdf_text)
# Create a metadata for each chunk
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
# Create a Chroma vector store
embeddings = OllamaEmbeddings(model="mistral")
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
ChatOllama(model="mistral"),
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
res = await chain.ainvoke(message.content) # Removed redundant callback argument
answer = res["answer"]
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name)
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()