We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I am trying to print the topics from using the Ensemble approach of Gensim EnsembleLda and also visualise the results using pyLDAvis
Code
lda_model_six = EnsembleLda( corpus=bow_corpus, num_models=3, random_state=42, distance_workers =2, num_topics=6, chunksize=100, passes=300, iterations=500, eval_every=None ) # Print topics lda_model_six.print_topics(num_words=50) # Visualise topics pyLDAvis.enable_notebook() vis_data_six = gensimvis.prepare( lda_model_six,bow_corpus, id2word,sort_topics=False ) pyLDAvis.save_html(vis_data_six,'topic_visuals_bigrams/ensembles/six_topics.html') pyLDAvis.display(vis_data_six)
Expected result
lda_model_six.print_topics(num_words=50)
[(0, '0.033*"fly" + 0.027*"airline" + 0.023*"service" + 0.019*"british_airways" + 0.013*"economy" + 0.012*"no" + 0.010*"seat" + 0.010*"price" + 0.010*"or" + 0.010*"pay" + 0.010*"food" + 0.010*"route" + 0.009*"time" + 0.009*"bad" + 0.009*"year" + 0.008*"well" + 0.008*"class" + 0.007*"experience" + 0.007*"london_heathrow" + 0.007*"like" + 0.007*"aircraft" + 0.007*"offer" + 0.007*"london" + 0.007*"customer" + 0.007*"british_airway" + 0.007*"premium" + 0.006*"long_haul" + 0.006*"carrier" + 0.006*"business_class" + 0.006*"cabin" + 0.006*"old" + 0.006*"poor" + 0.005*"don" + 0.005*"good" + 0.005*"lgw" + 0.005*"new" + 0.005*"think" + 0.005*"expect" + 0.005*"staff" + 0.005*"use" + 0.005*"charge" + 0.005*"business" + 0.005*"feel" + 0.005*"free" + 0.005*"travel" + 0.004*"trip" + 0.004*"fare" + 0.004*"ticket" + 0.004*"ve" + 0.004*"far"'),
But instead got this : [(0, '0.025*"81" + 0.025*"67" + 0.023*"110" + 0.020*"31" + 0.019*"87" + 0.017*"95" + 0.015*"122" + 0.015*"16" + 0.012*"75" + 0.012*"160" + 0.011*"1" + 0.010*"123" + 0.010*"700" + 0.010*"106" + 0.010*"398" + 0.010*"73" + 0.009*"738" + 0.009*"88" + 0.009*"45" + 0.009*"29" + 0.009*"108" + 0.008*"856" + 0.008*"102" + 0.008*"282" + 0.008*"94" + 0.008*"9" + 0.008*"30" + 0.008*"444" + 0.007*"6" + 0.007*"11" + 0.007*"154" + 0.007*"316" + 0.007*"127" + 0.007*"288" + 0.007*"866" + 0.006*"269" + 0.006*"352" + 0.006*"44" + 0.006*"509" + 0.006*"147" + 0.006*"717" + 0.005*"84" + 0.005*"79" + 0.005*"32" + 0.005*"612" + 0.005*"634" + 0.005*"650" + 0.005*"38" + 0.005*"161" + 0.005*"404"'),
pyLDAvis.display(vis_data_six)
But an error is given as AttributeError: 'EnsembleLda' object has no attribute 'num_topics'
Python package versions scikit-learn==1.3.0 spacy==3.6.0 pandas==2.0.3 numpy==1.25.1 scipy==1.11.1 matplotlib==3.7.2 gensim==4.3.0 nltk==3.8.1 pyldavis==3.4.1
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Problem description
I am trying to print the topics from using the Ensemble approach of Gensim EnsembleLda and also visualise the results using pyLDAvis
Code
Expected result
lda_model_six.print_topics(num_words=50)
is ran[(0,
'0.033*"fly" + 0.027*"airline" + 0.023*"service" + 0.019*"british_airways" + 0.013*"economy" + 0.012*"no" + 0.010*"seat" + 0.010*"price" + 0.010*"or" + 0.010*"pay" + 0.010*"food" + 0.010*"route" + 0.009*"time" + 0.009*"bad" + 0.009*"year" + 0.008*"well" + 0.008*"class" + 0.007*"experience" + 0.007*"london_heathrow" + 0.007*"like" + 0.007*"aircraft" + 0.007*"offer" + 0.007*"london" + 0.007*"customer" + 0.007*"british_airway" + 0.007*"premium" + 0.006*"long_haul" + 0.006*"carrier" + 0.006*"business_class" + 0.006*"cabin" + 0.006*"old" + 0.006*"poor" + 0.005*"don" + 0.005*"good" + 0.005*"lgw" + 0.005*"new" + 0.005*"think" + 0.005*"expect" + 0.005*"staff" + 0.005*"use" + 0.005*"charge" + 0.005*"business" + 0.005*"feel" + 0.005*"free" + 0.005*"travel" + 0.004*"trip" + 0.004*"fare" + 0.004*"ticket" + 0.004*"ve" + 0.004*"far"'),
But instead got this :
[(0,
'0.025*"81" + 0.025*"67" + 0.023*"110" + 0.020*"31" + 0.019*"87" + 0.017*"95" + 0.015*"122" + 0.015*"16" + 0.012*"75" + 0.012*"160" + 0.011*"1" + 0.010*"123" + 0.010*"700" + 0.010*"106" + 0.010*"398" + 0.010*"73" + 0.009*"738" + 0.009*"88" + 0.009*"45" + 0.009*"29" + 0.009*"108" + 0.008*"856" + 0.008*"102" + 0.008*"282" + 0.008*"94" + 0.008*"9" + 0.008*"30" + 0.008*"444" + 0.007*"6" + 0.007*"11" + 0.007*"154" + 0.007*"316" + 0.007*"127" + 0.007*"288" + 0.007*"866" + 0.006*"269" + 0.006*"352" + 0.006*"44" + 0.006*"509" + 0.006*"147" + 0.006*"717" + 0.005*"84" + 0.005*"79" + 0.005*"32" + 0.005*"612" + 0.005*"634" + 0.005*"650" + 0.005*"38" + 0.005*"161" + 0.005*"404"'),
pyLDAvis.display(vis_data_six)
is ranBut an error is given as AttributeError: 'EnsembleLda' object has no attribute 'num_topics'
Python package versions
scikit-learn==1.3.0
spacy==3.6.0
pandas==2.0.3
numpy==1.25.1
scipy==1.11.1
matplotlib==3.7.2
gensim==4.3.0
nltk==3.8.1
pyldavis==3.4.1
The text was updated successfully, but these errors were encountered: