-
Notifications
You must be signed in to change notification settings - Fork 6
/
2dRotations.tex
197 lines (184 loc) · 8.37 KB
/
2dRotations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
%
% Copyright © 2017 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%{
\index{rotation}
Plotting \cref{eqn:2dMultiplication:180}, as in
\cref{fig:rotationOfe1:rotationOfe1Fig1},
shows that multiplication by \( i \) rotates the \R{2} basis vectors by \( \pm \pi/2 \) radians,
with the
rotation direction dependent on the order of multiplication.
\pmathImageTwoFigures
{../figures/GAelectrodynamics/\subfigdir/}
{rotationOfe1Fig1}
{rotationOfe2Fig1}
{Multiplication by \( \Be_1 \Be_2 \).}{fig:rotationOfe1:rotationOfe1Fig1}{scale=0.5}
{orientedAreas.nb}
Multiplying a polar vector representation
\begin{equation}\label{eqn:2dRotations:280}
\Bx = \rho \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta },
\end{equation}
by \( i \) shows that a \( \pi/2 \) rotation is induced.
\index{pseudoscalar}
Multiplying the vector from the right by \( i \) gives
\begin{equation}\label{eqn:2dRotations:300}
\begin{aligned}
\Bx i
&= \Bx \Be_1 \Be_2 \\
&= \rho \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta } \Be_1 \Be_2 \\
&= \rho \lr{ \Be_2 \cos\theta - \Be_1 \sin\theta },
\end{aligned}
\end{equation}
a counterclockwise rotation of \( \pi/2 \) radians, and
multiplying the vector by \( i \) from the left gives
\begin{equation}\label{eqn:2dRotations:3}
\begin{aligned}
i \Bx
&= \Be_1 \Be_2 \Bx \\
&= \rho \Be_1 \Be_2 \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta } \Be_1 \Be_2 \\
&= \rho \lr{ -\Be_2 \cos\theta + \Be_1 \sin\theta },
\end{aligned}
\end{equation}
a clockwise rotation by \( \pi/2 \) radians
(\cref{problem:2dRotations:1}).
The transformed vector \( \Bx' = \Bx \Be_1 \Be_2 = -\Be_1 \Be_2 \Bx \,(= \Bx i = -i \Bx) \) has been rotated in the direction that takes \( \Be_1 \) to \( \Be_2 \), as illustrated
in \cref{fig:rotationOfV:rotationOfVFig1}.
\pmathImageFigure{../figures/GAelectrodynamics/\subfigdir/}{rotationOfVFig1}{\( \pi/2\) rotation in the plane using pseudoscalar multiplication.}{fig:rotationOfV:rotationOfVFig1}{0.3}{orientedAreas.nb}
In complex number theory the complex exponential \( e^{i\theta} \) can be used as a rotation operator.
Geometric algebra puts this rotation operator into the vector algebra toolbox, by utilizing
Euler's formula
\index{Euler's formula}
\begin{equation}\label{eqn:2dRotations:1140}
e^{i\theta} = \cos\theta + i \sin\theta,
\end{equation}
valid for this pseudoscalar imaginary representation too (\cref{problem:2dRotations:Euler}).
\index{complex exponential}
By writing \( \Be_2 = \Be_1 \Be_1 \Be_2 \),
a complex exponential can be factored directly out of the polar vector representation \cref{eqn:2dRotations:280}
\begin{equation}\label{eqn:2dRotations:940}
\begin{aligned}
\Bx
&= \rho \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta } \\
&= \rho \lr{ \Be_1 \cos\theta + (\Be_1 \Be_1) \Be_2 \sin\theta } \\
&= \rho \Be_1 \lr{ \cos\theta + \Be_1 \Be_2 \sin\theta } \\
&= \rho \Be_1 \lr{ \cos\theta + i \sin\theta } \\
&= \rho \Be_1 e^{i\theta}.
\end{aligned}
\end{equation}
We end up with a complex exponential multivector factor on the right.
Alternatively, since \( \Be_2 = \Be_2 \Be_1 \Be_1 \), a complex exponential can be factored out on the left
\begin{equation}\label{eqn:2dRotations:960}
\begin{aligned}
\Bx &= \rho \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta } \\
&= \rho \lr{ \Be_1 \cos\theta + \Be_2 (\Be_1 \Be_1) \sin\theta } \\
&= \rho \lr{ \cos\theta - \Be_1 \Be_2 \sin\theta } \Be_1 \\
&= \rho \lr{ \cos\theta - i \sin\theta } \Be_1 \\
&= \rho e^{-i\theta} \Be_1.
\end{aligned}
\end{equation}
Left and right exponential expressions have now been found for the polar representation
\begin{equation}\label{eqn:2dRotations:1120}
\rho \lr{ \Be_1 \cos\theta + \Be_2 \sin\theta }
= \rho e^{-i\theta} \Be_1 = \rho \Be_1 e^{i\theta}.
\end{equation}
This is essentially a recipe for rotation of a vector in the x-y plane.
Such rotations are illustrated in \cref{fig:rotationOfX:rotationOfXFig1}.
\pmathImageFigure{../figures/GAelectrodynamics/\subfigdir/}{rotationOfXFig1}{Rotation in a plane.}{fig:rotationOfX:rotationOfXFig1}{0.3}{orientedAreas.nb}
This generalizes to rotations of \R{N} vectors constrained to a plane.
Given orthonormal vectors \( \Bu, \Bv \) and any vector in the plane of these two vectors (\( \Bx \in \Span\setlr{\Bu,\Bv} \)), this vector is rotated \( \theta \) radians in the direction of rotation that takes \( \Bu \) to \( \Bv \) by
\begin{equation}\label{eqn:2dRotations:1160}
\Bx' = \Bx e^{ \Bu \Bv \theta } = e^{-\Bu \Bv \theta} \Bx.
\end{equation}
The sense of rotation for the rotation \( e^{ \Bu \Bv \theta} \) is opposite that of \( e^{\Bv \Bu \theta} \), which provides a first hint that bivectors can be characterized as having an orientation, somewhat akin to thinking of a vector as having a head and a tail.
\makeexample{Velocity and acceleration in polar coordinates.}{example:2dRotations:1180}{
Complex exponential representations of rotations work very nicely for describing vectors in polar coordinates.
A radial vector can be written as
\begin{equation}\label{eqn:2dRotations:1200}
\Br = r \rcap,
\end{equation}
as illustrated in \cref{fig:radialVectorCylindrical:radialVectorCylindricalFig1}.
The polar representation of the radial and azimuthal unit vector are simply
\pmathImageFigure{../figures/GAelectrodynamics/\subfigdir/}{radialVectorCylindricalFig1}{Radial vector in polar coordinates.}{fig:radialVectorCylindrical:radialVectorCylindricalFig1}{0.2}{radialVectorCylindricalFig1.nb}
\begin{equation}\label{eqn:2dRotations:1220}
\begin{aligned}
\rcap &= \Be_1 e^{i\theta} =
\Be_1 \lr{ \cos\theta + \Be_1 \Be_2 \sin\theta } = \Be_1 \cos\theta + \Be_2 \sin\theta \\
\thetacap &= \Be_2 e^{i\theta} =
\Be_2 \lr{ \cos\theta + \Be_1 \Be_2 \sin\theta } = \Be_2 \cos\theta - \Be_1 \sin\theta,
\end{aligned}
\end{equation}
where \( i = \Be_{12} \) is the unit bivector for the x-y plane. We can easily show that these unit vectors are orthogonal
\begin{equation}\label{eqn:2dRotations:1340}
\begin{aligned}
\rcap \thetacap
&= \lr{ \Be_1 e^{i \theta}} \lr{ e^{-i\theta} \Be_2} \\
&= \Be_1 \cancel{e^{i \theta} e^{-i\theta}} \Be_2 \\
&= \Be_1 \Be_2.
\end{aligned}
\end{equation}
By \cref{thm:multiplication:anticommutationNormal}, since the product of \( \rcap \thetacap \) is a bivector,
\( \rcap \) is orthogonal to \( \thetacap \).
We can find the
velocity and acceleration by taking time derivatives
\begin{equation}\label{eqn:2dRotations:1240}
\begin{aligned}
\Bv &= r' \rcap + r \rcap' \\
\Ba &= r'' \rcap + 2 r' \rcap' + r \rcap'',
\end{aligned}
\end{equation}
but to make these more meaningful want to evaluate the \( \rcap, \thetacap \) derivatives explicitly. Those are
\begin{equation}\label{eqn:2dRotations:1260}
\begin{aligned}
\rcap' &= \lr{ \Be_1 e^{i \theta} }' =
\mathLabelBox[ labelstyle={yshift=1.2em}, linestyle={} ]
{
\Be_1 i
}
{
\(\Be_1 (\Be_1 \Be_2) = (\Be_1 \Be_1) \Be_2 \)
}
e^{i\theta} \theta' = \Be_2 e^{i\theta} \theta' = \thetacap \omega \\
\thetacap' &= \lr{ \Be_2 e^{i \theta} }' =
\mathLabelBox[ labelstyle={below of=m\themathLableNode, below of=m\themathLableNode} ]
{
\Be_2 i
}
{
\(\Be_2 \Be_1 \Be_2
=
(-\Be_1 \Be_2) \Be_2\)
}
e^{i\theta} \theta' = -\Be_1 e^{i\theta} \theta' = -\rcap \omega,
\end{aligned}
\end{equation}
where \( \omega = d\theta/dt \), and primes denote time derivatives. The velocity and acceleration vectors can now be written explicitly in terms of radial and azimuthal components. The velocity is
\begin{equation}\label{eqn:2dRotations:1280}
\Bv = r' \rcap + r \omega \thetacap,
\end{equation}
and the acceleration is
\begin{equation}\label{eqn:2dRotations:1300}
\begin{aligned}
\Ba
&= r'' \rcap + 2 r' \omega \thetacap + r (\omega \thetacap)' \\
&= r'' \rcap + 2 r' \omega \thetacap + r \omega' \thetacap - r \omega^2 \rcap,
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:2dRotations:1320}
\Ba
= \rcap \lr{ r'' - r \omega^2 }
+ \inv{r} \thetacap \lr{ r^2 \omega }'.
\end{equation}
Using \cref{eqn:2dRotations:1220}, we also have the option of factoring out the rotation operation from the position vector or any of its derivatives
\begin{equation}\label{eqn:2dRotations:1360}
\begin{aligned}
\Br &= \lr{ r \Be_1 } e^{i \theta } \\
\Bv &= \lr{ r' \Be_1 + r \omega \Be_2 } e^{i \theta } \\
\Ba &= \lr{ \lr{ r'' - r \omega^2 } \Be_1 + \inv{r} \lr{ r^2 \omega }' \Be_2 } e^{i\theta}.
\end{aligned}
\end{equation}
In particular,
for uniform circular motion, each of the position, velocity and acceleration vectors can be represented by a vector that is fixed in space, subsequently rotated by an angle \( \theta \).
} % example
%}