-
Notifications
You must be signed in to change notification settings - Fork 0
/
01-1D-smoothing.Rmd
642 lines (402 loc) · 15.4 KB
/
01-1D-smoothing.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
---
title: "What are GAMs?"
author: "Eric Pedersen (with material heavily borrowed from David Miller)"
date: "May 31th, 2021"
output:
xaringan::moon_reader:
css: ['default', 'https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css', 'slides.css']
lib_dir: libs
nature:
titleSlideClass: ['inverse','middle','left',my-title-slide]
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
beforeInit: "macros.js"
ratio: '16:9'
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
#knitr::opts_knit$set(root.dir = usethis::proj_path())
library('here')
library('mgcv')
library('gratia')
library('gamair')
library('ggplot2')
library('purrr')
library('mvnfast')
library("tibble")
library('gganimate')
library('cowplot')
library('tidyr')
library("knitr")
library("viridis")
library('readr')
library('dplyr')
library('gganimate')
library('transformr')
library('patchwork')
library('splines2')
opts_chunk$set(cache=TRUE, echo=FALSE)
```
## Overview
- A very quick refresher on GLMs
- What is a GAM?
- How do GAMs work? (*Roughly*)
- What is smoothing?
- Fitting and plotting simple models
---
# A (very fast) refresher on GLMs
---
## What is a Generalized Linear model (GLM)?
Models that look like:
$y_i \sim Some\ distribution(\mu_i, \sigma_i)$
$link(\mu_i) = Intercept + \beta_1\cdot x_{1i} + \beta_2\cdot x_{2i} + \ldots$
---
## What is a Generalized Linear model (GLM)?
Models that look like:
$y_i \sim Some\ distribution(\mu_i, \sigma_i)$
$link(\mu_i) = Intercept + \beta_1\cdot x_{1i} + \beta_1\cdot x_{2i} + \ldots$
<br />
The average value of the response, $\mu_i$, assumed to be a linear combination of the covariates, $x_{ji}$, with an offset
---
## What is a Generalized Linear model (GLM)?
Models that look like:
$y_i \sim Some\ distribution(\mu_i, \sigma_i)$
$link(\mu_i) = Intercept + \beta_1\cdot x_{1i} + \beta_1\cdot x_{2i} + \ldots$
<br />
The model is fit (not really...) by maximizing the log-likelihood:
$\text{maximize} \sum_{i=1}^n logLik (Some\ distribution(y_i))$
$\text{ with respect to } Intercept, \ \beta_1,\ \beta_2, \ ...$
---
## With normally distributed data (for continuous unbounded data):
$y_i = Normal(\mu_i , \sigma_i)$
$Identity(\mu_i) = Intercept + \beta_1\cdot x_{1i} + \beta_1\cdot x_{2i} + \ldots$
```{r gaussplot, fig.width=12, fig.height=6}
set.seed(2) ## simulate some data...
dat <- tibble(x = seq(0,1, length = 100),
y = rnorm(100, 3*x+2, 0.5))
mod <- glm(y~x, data= dat, family=gaussian)
p <- ggplot(dat,aes(y=y,x=x)) +
geom_point() +
geom_smooth(method= glm,formula=y~x, method.args=list(family = "gaussian"))+
labs(title= paste0("True: Identity(mu) = 2 + 3*x, sigma = 0.5\n",
"Estimated: Identity(mu) = ",
round(coef(mod)[[1]],1)," + ",
round(coef(mod)[[2]],1),"*x, sigma = ",
round(summary(mod)$dispersion,2)))+
theme_minimal(base_size = 20)
print(p)
```
---
## With Poisson-distributed data (for count data):
$y_i = Poisson(\mu_i)$
$\text{ln}(\mu_i) = Intercept + \beta_1\cdot x_{1i} + \beta_1\cdot x_{2i} + \ldots$
```{r poisplot, fig.width=12, fig.height=6}
set.seed(2) ## simulate some data...
dat <- tibble(x = seq(0,1, length = 100),
y = rpois(100, exp(3*x+2)))
mod <- glm(y~x, data= dat, family= poisson(link ="log"))
p <- ggplot(dat,aes(y=y,x=x)) +
geom_point() +
geom_smooth(method= glm,formula=y~x, method.args=list(family = "poisson"))+
labs(title= paste0("True: ln(mu) = 2 + 3*x\n",
"Estimated: ln(mu) = ",
round(coef(mod)[[1]],1)," + ",
round(coef(mod)[[2]],1),"*x"))+
theme_minimal(base_size = 20)
print(p)
```
---
# Why bother with anything more complicated?
---
## Is this linear?
```{r islinear, fig.width=12, fig.height=6}
set.seed(2) ## simulate some data...
dat <- gamSim(1, n=400, dist="normal", scale=0.2, verbose=FALSE)
dat <- dat[,c("y", "x0", "x1", "x2", "x3")]
p <- ggplot(dat,aes(y=y,x=x1)) +
geom_point() +
theme_minimal(base_size = 20)
print(p)
```
---
## Is this linear? Maybe?
```{r eval=FALSE, echo=TRUE}
lm(y ~ x1, data=dat)
```
```{r maybe, fig.width=12, fig.height=6}
p <- ggplot(dat, aes(y=y, x=x1)) +
geom_point() +
theme_minimal(base_size = 20)
print(p + geom_smooth(method="lm"))
```
---
# What is a GAM?
The Generalized additive model assumes that $link(\mu_i)$ is the sum of some *nonlinear* functions of the covariates
$y_i \sim Some\ distribution(\mu_i, \sigma_i)$
$link(\mu_i) = Intercept + f_1(x_{1i}) + f_2(x_{2i}) + \ldots$
<br />
--
But it is much easier to fit *linear* functions than nonlinear functions, so GAMs use a trick:
1. Transform each predictor variable into several new variables, called basis functions
2. Create nonlinear functions as linear sums of those basis functions
---
```{r,fig.width=5}
knitr::include_graphics("figures/basis_breakdown.png")
```
```{r basis-plot, message=FALSE, warning=FALSE,fig.width=12,fig.height=5}
dat <- tibble(x = seq(0, 1, length=50))
bases <- as.matrix(smoothCon(s(x, k = 6),data = dat,knots = NULL,absorb.cons = TRUE)[[1]]$X)
basis_simple <- dat %>%
bind_cols(as.tibble(bases))%>%
gather(key = `basis function`,value =value, -x)
p <- ggplot(basis_simple, aes(x, value, group = `basis function`, color = factor(`basis function`))) +
geom_line() +
geom_hline(yintercept = 0,lty=2)+
scale_color_brewer("Basis function",palette = "Set1") +
theme_minimal(base_size = 20)+
theme(panel.grid = element_blank())
p
```
---
```{r basis-animate, message=FALSE, warning=FALSE,cache=TRUE,fig.width=12}
basis_transition <- list()
basis_ends <- list()
set.seed(3)
for(i in 1:10){
coef <- rnorm(5)
current_basis <- bases%*%diag(coef) %>%
as.tibble()
max_vals <- current_basis[50,]
max_vals <- unlist(max_vals)
current_basis$total <- rowSums(current_basis)
current_basis <- bind_cols(dat, current_basis)%>%
gather(key = `basis function`,value =value, -x, -total)
current_basis$sim <- i
basis_transition[[i]] <- current_basis
basis_ends[[i]] <- tibble(x = 1.05,
value = max_vals,
`basis function` = paste0("V", 1:5),
label = paste(`basis function`, "*", round(coef,2)),
sim = i
)
}
basis_transition <- bind_rows(basis_transition)
basis_ends <- bind_rows(basis_ends)
p <- ggplot(basis_transition,
aes(x, value, group = `basis function`, color = factor(`basis function`))) +
geom_line() +
geom_line(aes(y=total),color= "black",size=2)+
geom_hline(yintercept = 0,lty=2)+
geom_text(data=basis_ends, aes(label = label), show.legend = F)+
scale_color_brewer("Basis function",palette = "Set1") +
theme_minimal(base_size = 20)+
theme(panel.grid = element_blank()) +
transition_states(sim,
transition_length = 2,
state_length = 2)
p
```
---
#This means that writing a GAM in code is as simple as:
```{r echo=TRUE, eval=FALSE}
mod <- gam(y~s(x,k=10),data=dat)
```
---
# You've seen basis functions before:
```{r eval = FALSE,include=TRUE,echo=TRUE}
glm(y ~ I(x) + I(x^2) + I(x^3) +...)
```
--
Polynomials are one type of basis function!
--
... But not a good one.
```{r , message=FALSE, warning=FALSE,cache=TRUE,fig.width=12,fig.height=5}
set.seed(2)
dat <- tibble(x = seq(-10,10, length=50),
y = plogis(x,scale = 1)+rnorm(50,mean = 0,sd = 0.1))%>%
mutate(y = ifelse(between(x,4,8)|between(x,-10,-9),NA,y))
for(i in 2:6){
dat[,paste0("degree=",i)] = predict(glm(y~poly(x,i),data=dat,
na.action = na.exclude),newdata = dat)
}
dat <- dat %>%
gather(key = degree,value= value,-x,-y)
p <- ggplot(dat, aes(x,y))+
geom_point()+
geom_line(aes(y=value, group=degree))+
theme_minimal(base_size = 20)+
transition_states(degree,
transition_length = 0,
state_length = 0.5)+
ggtitle('{closest_state}')
p
```
---
# One of the most common types of smoother are cubic splines
(We won't get into the details about how these are defined)
```{r eval = FALSE,include=TRUE,echo=TRUE}
glm(y ~ ns(x,df = 4))
```
--
But even cubic splines can overfit:
```{r , message=FALSE, warning=FALSE,cache=TRUE,fig.width=12,fig.height=5}
set.seed(2)
dat <- tibble(x = seq(-10,10, length=50),
y = plogis(x,scale = 1)+rnorm(50,mean = 0,sd = 0.1))%>%
mutate(y = ifelse(between(x,4,8)|between(x,-10,-9),NA,y))
dat[,paste0("degree=",10)] = predict(glm(y~bSpline(x,df = 10),data=dat,
na.action = na.exclude),newdata = dat)
dat <- dat %>%
gather(key = degree,value= value,-x,-y)
p <- ggplot(dat, aes(x,y))+
geom_point()+
geom_line(aes(y=value, group=degree))+
theme_minimal(base_size = 20)+
labs(title = "Cubic spline, 10 deegrees of freedom")
p
```
---
# How do we prevent overfitting?
The second key part of fitting GAMs: penalizing overly wiggly functions
We want functions that fit our data well, but do not overfit: that is, ones that are not too *wiggly*.
--
Remember from before:
$\text{maximize} \sum_{i=1}^n logLik (y_i)$
$\text{ with respect to } Intercept, \ \beta_1,\ \beta_2, \ ...$
---
# How do we prevent overfitting?
The second key part of fitting GAMs: penalizing overly wiggly functions
We want functions that fit our data well, but do not overfit: that is, ones that are not too *wiggly*.
We can modify this to add a *penalty* on the size of the model parameters:
$\text{maximize} \sum_{i=1}^n logLik (y_i) - \lambda\cdot \mathbf{\beta}'\mathbf{S}\mathbf{\beta}$
$= \text{maximize} \sum_{i=1}^n logLik (y_i) - \lambda\cdot \sum_{a=1}^{k}\sum_{b=1}^k \beta_a\cdot\beta_b\cdot P_{a,b}$
$\text{ with respect to } Intercept, \ \beta_1,\ \beta_2, \ ...$
---
# How do we prevent overfitting?
$\sum_{i=1}^n logLik (y_i) - \lambda\cdot \mathbf{\beta}'\mathbf{S}\mathbf{\beta}$
<br />
--
The penalty $\lambda$ trades off between how well the model fits the observed data ( $\sum_{i=1}^n logLik (y_i)$ ), and how wiggly the fitted function is ( $\mathbf{\beta}'\mathbf{S}\mathbf{\beta}$ ).
<br />
--
The matrix $\mathbf{S}$ measures how wiggly different function shapes are. Each type of smoother has its own penalty matrix; `mgcv` handles this.
<br />
--
Some combinations of parameters correspond to a penalty value of zero; these combinations are called the *null space* of the smoother
---
# For instance, for smoothing splines:
We can create a penalty matrix that penalizes the squared second derivative:
$\int_{x_1}^{x_n} [f^{\prime\prime}]^2 dx = \boldsymbol{\beta}^{\mathsf{T}}\mathbf{S}\boldsymbol{\beta}$
--
```{r pen-plot, message=FALSE, warning=FALSE,fig.width=12,fig.height=5}
dat <- tibble(x = seq(0, 1, length=50))
bases <- as.matrix(smoothCon(s(x, k = 6),data = dat,knots = NULL,absorb.cons = TRUE)[[1]]$X)
pen_mat <- smoothCon(s(x, k = 6),data = dat,knots = NULL,absorb.cons = TRUE)[[1]]$S[[1]]
pen_df <- pen_mat %>%
as.data.frame()%>%
cbind(basis_x = paste0("V",1:5))%>%
as.tibble()%>%
gather(key=basis_y, value = value,-basis_x)
basis_simple <- dat %>%
bind_cols(as.tibble(bases))%>%
gather(key = `basis function`,value =value, -x)
p <- ggplot(basis_simple, aes(x, value, group = `basis function`, color = factor(`basis function`))) +
geom_line() +
geom_hline(yintercept = 0,lty=2)+
scale_color_brewer("Basis function",palette = "Set1") +
theme_minimal(base_size = 20)+
theme(panel.grid = element_blank(),
legend.position = "bottom")
S <- ggplot(pen_df, aes(basis_x, reorder(basis_y,desc(basis_y)), fill =value)) +
geom_tile(color="black")+
scale_fill_gradient2("penalty value", low="blue",high="red")+
labs(x= NULL,y=NULL)+
theme_minimal(base_size = 20)+
theme(panel.grid = element_blank(),
legend.position = "bottom")+
coord_equal()
p + S
```
---
```{r pen-ani1, message=FALSE,cache=TRUE, warning=FALSE,fig.width=12,fig.height=5 }
p + S
```
```{r pen-ani2, message=FALSE,cache=TRUE, warning=FALSE,fig.width=12,fig.height=5 }
basis_transition <- list()
basis_ends <- list()
set.seed(3)
for(i in 1:5){
coef <- rep(0,times=5)
coef[i] = 1
current_basis <- bases%*%diag(coef) %>%
as.tibble()
current_pen <- (t(coef) %*% pen_mat %*% coef)[1,1]
max_vals <- current_basis[50,]
max_vals <- unlist(max_vals)
current_basis$total <- rowSums(current_basis)
current_basis <- bind_cols(dat, current_basis)%>%
gather(key = `basis function`,value =value, -x, -total)
current_basis$sim <- i
current_basis$`total penalty` = paste0("Penalty = ",round(current_pen,1))
basis_transition[[i]] <- current_basis
basis_ends[[i]] <- tibble(x = 1.05,
value = max_vals,
`basis function` = paste0("V", 1:5),
label = `basis function`,
sim = i
)
}
basis_transition <- bind_rows(basis_transition)
basis_ends <- bind_rows(basis_ends)
p <- ggplot(basis_transition,
aes(x, value, group = `basis function`, color = factor(`basis function`))) +
geom_line() +
geom_line(aes(y=total),color= "black",size=2)+
geom_hline(yintercept = 0,lty=2)+
geom_text(aes(label = `total penalty`), x= 0.5, y= 1,size=10,color="black", show.legend = F) +
geom_text(data=basis_ends, aes(label = label), show.legend = F)+
scale_color_brewer("Basis function",palette = "Set1") +
theme_minimal(base_size = 20)+
theme(panel.grid = element_blank()) +
transition_states(sim,
transition_length = 2,
state_length = 2)
p
```
---
# You've also (probably) already seen penalties before:
Single-level random effects are another type of smoother!
```{r}
knitr::include_graphics("figures/spiderGAM.jpg")
```
---
# You've also (probably) already seen penalties before:
Single-level random effects are another type of smoother!
You've probably seen random effects written like:
$y_{i,j} =\alpha + \beta_j + \epsilon_i$, $\beta_i \sim Normal(0, \sigma_{\beta}^2)$
--
* The basis functions are the different levels of the discrete variable: $f_j(x_i)=1$ if $x_i$ is in group $j$, $f_j(x_i)=0$ if not
--
* The $\beta_j$ terms are the parameters the basis functions are being scaled by
--
* The variance of the random effect is equal to $1/\lambda$, so the $S$ matrix for a random effect is just a diagonal matrix with $1/\sigma^2$ on the diagonal
---
# How are the $\lambda$ penalties fit?
* By default, `mgcv` uses Generalized Cross-Validation, but this tends to work well only with really large data sets
--
* We will use restricted maximum likelihood (REML) throughout this workshop for fitting GAMs
--
* This is the same REML you may have used when fitting random effects models; again, smoothers in GAMs are basically a random effect in a different hat
---
# To review:
* GAMs are like GLMs: they use link functions and likelihoods to model different types of data
--
* GAMs use linear combinations of basis functions to create nonlinear functions to predict data
--
* GAMs use penalty parameters, $\lambda$, to prevent overfitting the data; this trades off between how wiggly the function is and how well it fits the data
(measured by the likelihood)
--
* the penalty matrix for a given smooth, $\textbf{S}$, encodes how the shape of the function translates into the total size of the penalty
--
# But enough lecture; on to the live coding!