-
Notifications
You must be signed in to change notification settings - Fork 7
/
trainerBaseline.py
426 lines (356 loc) · 17.7 KB
/
trainerBaseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from torch.nn import Sequential, Linear, ReLU, GRU
from torch_geometric.data import Dataset, Data, DataLoader
# from torch_geometric.datasets import QM9
from torch_geometric.nn import NNConv, Set2Set
from torch.nn import BCELoss, BCEWithLogitsLoss
from torch_geometric.utils import remove_self_loops
import numpy as np
import os
import os.path as osp
import random
import sys
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
import time, itertools
from torch_geometric.utils import degree
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from torch.utils.tensorboard import SummaryWriter
#returns the encoding and adjacency matrix given the program filename
def graphToMatrices(filename):
# move to global to i`mprove performance
from matrixFormation import oneHotEncoder,adjacencyMatrixCreator
languageType=""
astOfProgram=[]
if filename.split(".")[1] == "py":
languageType = "python"
listOfFiles = open('python-asts.txt', 'r')
filenameArray = listOfFiles.readlines()
listOfAsts = open('python-asts.json', 'r')
astArray = listOfAsts.readlines()
filename+="\n"
idxOfFile = filenameArray.index(filename)
astOfProgram = astArray[idxOfFile]
else:
languageType = "java"
listOfFiles = open('java-asts.txt', 'r')
filenameArray = listOfFiles.readlines()
listOfAsts = open('java-asts.json', 'r')
astArray = listOfAsts.readlines()
filename+="\n"
idxOfFile = filenameArray.index(filename)
astOfProgram = astArray[idxOfFile]
encodedMatrix = oneHotEncoder(astOfProgram,languageType)
adjacencyMatrix,num_nodes = adjacencyMatrixCreator(astOfProgram)
return adjacencyMatrix,encodedMatrix,num_nodes
def getTrainingPairs():
trainingPairs = []
## read from trainPairs.txt (Java, py)
## read from txt (Java, py)
listOfClones = open('../CloneDetectionSrc/ClonePairs.txt', 'r')
listOfNonClones = open('../CloneDetectionSrc/nonClonePairs.txt', 'r')
trainingPairs = listOfClones.readlines()
nonCloneTrainingPairs = listOfNonClones.readlines()
return trainingPairs, nonCloneTrainingPairs
class PairData(Data):
def __inc__(self, key, value):
if key == 'edge_index1':
return self.x1.size(0)
if key == 'edge_index2':
return self.x2.size(0)
else:
return super(PairData, self).__inc__(key, value)
def __cat_dim__(self, key, value):
if 'index' in key or 'face' in key:
return 1
else:
return 0
# will return dataset pairs =>
# ------------------------------------
# data_point -> ASTAdjacencyMatrices + encodedMatrices + Label (pair or not)
# ------------------------------------
## Define n
n=51917+51917
# n=4405
# n=60
class TrainLoadData(Dataset):
def __init__(self, root, transform=None, pre_transform=None):
super(TrainLoadData, self).__init__(root, transform, pre_transform)
# self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ['../CloneDetectionSrc/NonClonePairs.txt']
@property
def processed_file_names(self):
return ['cloneDetectionData/data_{}.pt'.format(i) for i in range(n)]
def process(self):
#get all the pairs - self.raw_paths
# check pair or not and then save the pair in the data
clonePairs,nonClonePairs = getTrainingPairs()
if(len(clonePairs)>int(n/2)):
clonePairs=clonePairs[:(int(n/2))]
if(len(nonClonePairs)>int(n/2)):
nonClonePairs=nonClonePairs[:(int(n/2))]
i = 0
for pairs in clonePairs:
print(i)
matrix1, encode1, num_nodes1 = graphToMatrices(pairs.split(",")[0])
matrix2, encode2, num_nodes2 = graphToMatrices(pairs.split(",")[1][:-1])
listForLabel=[1]
labelTensor=torch.Tensor(listForLabel)
# data = Data(x1=torch.Tensor(encode1), x2=torch.Tensor(encode2), edge_index1=torch.Tensor(matrix1), edge_index2=torch.Tensor(matrix2),num_nodes1=num_nodes1,num_nodes2=num_nodes2 y=1)
data = PairData(x1=torch.Tensor(encode1), x2=torch.Tensor(encode2), edge_index1=torch.Tensor(matrix1), edge_index2=torch.Tensor(matrix2), y=labelTensor)
# data1 = Data(x=torch.Tensor(encode1), edge_index=torch.LongTensor(matrix1), num_nodes=num_nodes1)
# data2 = Data(x=torch.Tensor(encode2), edge_index=torch.LongTensor(matrix2), num_nodes=num_nodes2)
# data = Data(data1=data1, data2=data2, y=1)
torch.save(data, osp.join(self.processed_dir, 'cloneDetectionData/data_{}.pt'.format(i)))
i += 1
for pairs in nonClonePairs:
print(i)
matrix1, encode1, num_nodes1 = graphToMatrices(pairs.split(",")[0])
matrix2, encode2, num_nodes2 = graphToMatrices(pairs.split(",")[1][:-1])
listForLabel=[0]
labelTensor=torch.Tensor(listForLabel)
# data = Data(x1=torch.Tensor(encode1), x2=torch.Tensor(encode2), edge_index1=torch.Tensor(matrix1), edge_index2=torch.Tensor(matrix2),num_nodes1=num_nodes1,num_nodes2=num_nodes2 y=0)
data = PairData(x1=torch.Tensor(encode1), x2=torch.Tensor(encode2), edge_index1=torch.Tensor(matrix1), edge_index2=torch.Tensor(matrix2), y=labelTensor)
# data1 = Data(x=torch.Tensor(encode1), edge_index=torch.LongTensor(matrix1), num_nodes=num_nodes1)
# data2 = Data(x=torch.Tensor(encode2), edge_index=torch.LongTensor(matrix2), num_nodes=num_nodes2)
# data = Data(data1=data1, data2=data2, y=0)
torch.save(data, osp.join(self.processed_dir, 'cloneDetectionData/data_{}.pt'.format(i)))
i += 1
def len(self):
return len(self.processed_file_names)
def get(self, idx):
data = torch.load(osp.join(self.processed_dir, 'cloneDetectionData/data_{}.pt'.format(idx)))
# print(data)
# print(data.edge_index2.shape)
return data
class MyTransform(object):
def __call__(self, data):
# Specify target - in our case its 0 only
data.y = data.y[:, target]
return data
class Complete(object):
def __call__(self, data):
device = data.edge_index.device
row = torch.arange(data.num_nodes, dtype=torch.long, device=device)
col = torch.arange(data.num_nodes, dtype=torch.long, device=device)
row = row.view(-1, 1).repeat(1, data.num_nodes).view(-1)
col = col.repeat(data.num_nodes)
edge_index = torch.stack([row, col], dim=0)
edge_attr = None
if data.edge_attr is not None:
idx = data.edge_index[0] * data.num_nodes + data.edge_index[1]
size = list(data.edge_attr.size())
size[0] = data.num_nodes * data.num_nodes
edge_attr = data.edge_attr.new_zeros(size)
edge_attr[idx] = data.edge_attr
edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
data.edge_attr = edge_attr
data.edge_index = edge_index
return data
def train(epoch, use_unsup_loss):
model.train()
loss_all = 0
sup_loss_all = 0
unsup_loss_all = 0
unsup_sup_loss_all = 0
if use_unsup_loss:
for data, udata in zip(train_loader, unsup_train_loader):
data = data.to(device)
udata = udata.to(device)
optimizer.zero_grad()
criterion = BCEWithLogitsLoss()
pred=model(data)
sup_loss = criterion(pred, data.y)
unsup_loss1 = model.unsup_loss1(udata,udata.x1_batch) # unsup loss for java encoder
unsup_loss2 = model.unsup_loss2(udata,udata.x2_batch) # unsup loss for python encoder
if separate_encoder:
unsup_sup_loss1 = model.unsup_sup_loss1(udata,udata.x1_batch)
unsup_sup_loss2 = model.unsup_sup_loss2(udata,udata.x2_batch)
loss = sup_loss + (unsup_loss1 + unsup_loss2) + (unsup_sup_loss1 + unsup_sup_loss2)* lamda
else:
loss = sup_loss + (unsup_loss1 + unsup_loss2 )* lamda
loss.backward()
sup_loss_all += sup_loss.item()*batch_size
unsup_loss_all += (unsup_loss1.item()+unsup_loss2.item())*batch_size
if separate_encoder:
unsup_sup_loss_all += (unsup_sup_loss1.item()+unsup_sup_loss2.item())
loss_all += loss.item() * batch_size
optimizer.step()
if separate_encoder:
print(sup_loss_all, unsup_loss_all, unsup_sup_loss_all)
return loss_all / len(train_loader.dataset),sup_loss_all, unsup_loss_all, unsup_sup_loss_all
else:
print(sup_loss_all/ len(train_loader.dataset), unsup_loss_all/ len(train_loader.dataset))
return loss_all / len(train_loader.dataset),sup_loss_all/ len(train_loader.dataset), unsup_loss_all/ len(train_loader.dataset)
else:
cnt=0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
criterion = BCEWithLogitsLoss()
pred=model(data)
sup_loss = criterion(pred, data.y)
loss = sup_loss
loss.backward()
loss_all += loss.item() * batch_size
optimizer.step()
cnt+=1
print(cnt)
return loss_all / len(train_loader.dataset)
def test(loader):
model.eval()
error = 0
precision =0
recall = 0
accuracy = 0
predictions=[]
grndTruth=[]
####################### fix the metrics
for data in loader:
data = data.to(device)
# data.x=data.x.float()
# error += (model(data) * std - data.y * std).abs().sum().item() # MAE
y_pred=torch.round(torch.sigmoid(model(data)))
predictions.append(y_pred.cpu().detach().numpy().tolist())
grndTruth.append(data.y.cpu().detach().numpy().tolist())
error += (y_pred - data.y).abs().sum().item() # MAE
predictions = list(itertools.chain.from_iterable(predictions))
grndTruth = list(itertools.chain.from_iterable(grndTruth))
accuracy += accuracy_score(grndTruth,predictions)
precision += precision_score(grndTruth,predictions)
recall += recall_score(grndTruth,predictions)
return error / len(loader.dataset),accuracy,precision,recall
def seed_everything(seed=1234):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
seed_everything()
from baseLineModel import Net
# ============
# Hyperparameters
# ============
target = 0
dim = 64
epochs = 25
batch_size = 200
lamda = 0.001
use_unsup_loss = False
separate_encoder = False
tb = SummaryWriter()
## If transformation is required :
# transform = T.Compose([MyTransform(), Complete()])
# dataset = JavaClassificationDataset(root="./",transform=transform)
dataset = TrainLoadData(root="./")
dataset=dataset.shuffle()
print('num_features : {}\n'.format(dataset.num_features))
dataset_num_features = max(dataset.num_features, 1)
# if dataset.data.x is None:
# max_degree = 0
# degs = []
# for data in dataset:
# degs += [degree(data.edge_index[0], dtype=torch.long)]
# max_degree = max(max_degree, degs[-1].max().item())
# if max_degree < 1000:
# dataset.transform = T.OneHotDegree(max_degree)
# else:
# deg = torch.cat(degs, dim=0).to(torch.float)
# mean, std = deg.mean().item(), deg.std().item()
# dataset.transform = NormalizedDegree(mean, std)
# Normalize targets to mean = 0 and std = 1.
# mean = dataset.data.y[:, target].mean().item()
# std = dataset.data.y[:, target].std().item()
# dataset.data.y[:, target] = (dataset.data.y[:, target] - mean) / std
####### Split datasets.
# trainSize=int(0.6*len(dataset))
# valSize=int(0.2*len(dataset))
# testSize=len(dataset)-trainSize-valSize
# train_dataset, test_dataset , val_dataset = torch.utils.data.random_split(dataset, [trainSize,valSize,testSize])
testLimit=int(0.2*n)
valLimit=int(0.4*n)
test_dataset = dataset[:testLimit]
val_dataset = dataset[testLimit:valLimit]
train_dataset = dataset[valLimit:]
test_loader = DataLoader(test_dataset, follow_batch=['x1', 'x2'],batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset,follow_batch=['x1', 'x2'], batch_size=batch_size, shuffle=True)
train_loader = DataLoader(train_dataset,follow_batch=['x1', 'x2'], batch_size=batch_size, shuffle=True)
if use_unsup_loss:
unsup_train_dataset = dataset[valLimit:]
unsup_train_loader = DataLoader(unsup_train_dataset,follow_batch=['x1', 'x2'], batch_size=batch_size, shuffle=True)
print(len(train_dataset), len(val_dataset), len(test_dataset), len(unsup_train_dataset))
else:
print(len(train_dataset), len(val_dataset), len(test_dataset))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset_num_features=142
model = Net(dataset_num_features, dim, use_unsup_loss, separate_encoder).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.7, patience=5, min_lr=0.000001)
# val_error = test(val_loader)
# test_error = test(test_loader)
# print('Epoch: {:03d}, Validation MAE: {:.7f}, Test MAE: {:.7f},'.format(0, val_error, test_error))
# state=torch.load("javaModels/Classifier-Infograph*_271.pth")
# model.load_state_dict(state['state_dict'])
# print(state['state_dict'])
# test_loader2 = DataLoader(test_dataset, follow_batch=['x1', 'x2'],batch_size=1000, shuffle=True)
# for data in (test_loader2):
# print(data.y)
best_val_error = None
for epoch in range(1, epochs):
start_time = time.time()
lr = scheduler.optimizer.param_groups[0]['lr']
print("Training epoch %d :" % epoch)
if separate_encoder:
loss,sup_loss, unsup_loss, unsup_sup_loss = train(epoch, use_unsup_loss)
else:
if use_unsup_loss:
loss,sup_loss, unsup_loss = train(epoch, use_unsup_loss)
else:
sup_loss = train(epoch, use_unsup_loss)
print("Testing epoch %d :" % epoch)
val_error,val_accuracy,val_prec,val_recall = test(val_loader)
scheduler.step(val_error)
if best_val_error is None or val_error <= best_val_error:
test_error,test_accuracy,test_prec,test_recall = test(test_loader)
best_val_error = val_error
tb.add_scalar('Sup_Loss', sup_loss, epoch)
if use_unsup_loss:
tb.add_scalar('UnSup Loss', unsup_loss, epoch)
if separate_encoder:
tb.add_scalar('UnSup-Sup- Loss', unsup_sup_loss, epoch)
tb.add_scalar('val_error', val_error, epoch)
tb.add_scalar('val_accuracy', val_accuracy, epoch)
tb.add_scalar('val_prec', val_prec, epoch)
tb.add_scalar('val_recall', val_recall, epoch)
tb.add_scalar('test_error', test_error, epoch)
tb.add_scalar('test_accuracy', test_accuracy, epoch)
tb.add_scalar('test_prec', test_prec, epoch)
tb.add_scalar('test_recall', test_recall, epoch)
end_time = time.time()
epoch_duration = (end_time - start_time)/3600
# change this
with open('cloneDetection-EpochResults-baseLine-SimpleGCn.txt', 'a+') as f:
if separate_encoder:
f.write('Epoch: {:03d}, LR: {:7f}, T.Loss: {:.7f}, Sup-Loss: {:.7f},unSup-Loss: {:.7f},unSup-sup-Loss: {:.7f}, Validation MAE: {:.7f},Validation Acc: {:.7f},Validation Prec: {:.7f},Validation Rec: {:.7f},Test MAE: {:.7f},Test Acc: {:.7f},Test Prec: {:.7f},Test Rec: {:.7f}, Time : {:.7f}'.format(epoch, lr, loss,sup_loss, unsup_loss, unsup_sup_loss, val_error,val_accuracy,val_prec,val_recall,test_error,test_accuracy,test_prec,test_recall,epoch_duration))
else:
if use_unsup_loss:
f.write('Epoch: {:03d}, LR: {:7f}, T.Loss: {:.7f}, Sup-Loss: {:.7f},unSup-Loss: {:.7f}, Validation MAE: {:.7f},Validation Acc: {:.7f},Validation Prec: {:.7f},Validation Rec: {:.7f},Test MAE: {:.7f},Test Acc: {:.7f},Test Prec: {:.7f},Test Rec: {:.7f}, Time : {:.7f}'.format(epoch, lr, loss,sup_loss, unsup_loss, val_error,val_accuracy,val_prec,val_recall,test_error,test_accuracy,test_prec,test_recall,epoch_duration))
else:
f.write('Epoch: {:03d}, LR: {:7f}, Sup-Loss: {:.7f}, Validation MAE: {:.7f},Validation Acc: {:.7f},Validation Prec: {:.7f},Validation Rec: {:.7f},Test MAE: {:.7f},Test Acc: {:.7f},Test Prec: {:.7f},Test Rec: {:.7f}, Time : {:.7f}'.format(epoch, lr,sup_loss, val_error,val_accuracy,val_prec,val_recall,test_error,test_accuracy,test_prec,test_recall,epoch_duration))
f.write('\n')
# change this
torch.save({'state_dict': model.state_dict(),'optimizer' : optimizer.state_dict()},"cloneDetectionModels/baseline_SimpleGCN_bigDB_new_"+str(epoch)+".pth")
# change this
# with open('cloneDetection-EpochResults-baseLine-SimpleGCn.log', 'a+') as f:
# f.write('{},{},{},{},{},{},{},{}\n'.format(target,1000,use_unsup_loss,separate_encoder,0.001,0,val_error,test_error))
# f.write('\n')
# f.write("Total time taken for evaluation is: ",(end_time - start_time)/3600,"hrs.")
tb.close()