MonoBehaviour Life Cycle Flow Chart
// MonoBehaviour is the base class from which every Unity script derives.
// Offers some life cycle functions that are easier for you to develop your game.
// Some of the most frequently used ones are as follows;
Awake()
Start()
Update()
FixedUpdate()
LateUpdate()
OnGUI()
OnEnable()
OnDisable()
// Every object in a Scene has a Transform.
// It's used to store and manipulate the position, rotation and scale of the object.
transform.position.x = 0;
// Vector3 is representation of 3D vectors and points
// It's used to represent 3D positions,considering x,y & z axis.
Vector3 v = new Vector3(0f, 0f, 0f);
// A Quaternion stores the rotation of the Transform in world space.
// Quaternions are based on complex numbers and don't suffer from gimbal lock.
// Unity internally uses Quaternions to represent all rotations.
// You almost never access or modify individual Quaternion components (x,y,z,w);
// A rotation 30 degrees around the y-axis
Quaternion rotation = Quaternion.Euler(0, 30, 0);
// Euler angles are "degree angles" like 90, 180, 45, 30 degrees.
// Quaternions differ from Euler angles in that they represent a point on a Unit Sphere (the radius is 1 unit).
// Create a quaternion that represents 30 degrees about X, 10 degrees about Y
Quaternion rotation = Quaternion.Euler(30, 10, 0);
// Using a Vector
Vector3 EulerRotation = new Vector3(30, 10, 0);
Quaternion rotation = Quaternion.Euler(EulerRotation);
// Convert a transform's Quaternion angles to Euler angles
Quaternion quaternionAngles = transform.rotation;
Vector3 eulerAngles = quaternionAngles.eulerAngles;
// Moves the transform in the direction and distance of translation.
public void Translate(Vector3 translation);
public void Translate(Vector3 translation, Space relativeTo = Space.Self);
transform.Translate(Vector3.right * movementSpeed);
// Calculate a position between the points specified by current and target
// Moving no farther than the distance specified by maxDistanceDelta
public static Vector3 MoveTowards(Vector3 current, Vector3 target, float maxDistanceDelta);
Vector3 targetPosition;
transform.position = Vector3.MoveTowards(transform.position, targetPosition, Time.deltaTime);
// Linearly interpolates between two points. Results in a smooth transition.
public static Vector3 Lerp(Vector3 startValue, Vector3 endValue, float interpolationRatio);
Vector3 targetPosition;
float t = 0;
t += Time.deltaTime * speed;
transform.position = Vector3.Lerp(transform.position, targetPosition, t);
// Gradually changes a vector towards a desired goal over time.
// The vector is smoothed by some spring-damper like function, which will never overshoot.
// The most common use is for smoothing a follow camera.
public static Vector3 SmoothDamp(Vector3 current, Vector3 target, ref Vector3 currentVelocity, float smoothTime, float maxSpeed = Mathf.Infinity, float deltaTime = Time.deltaTime);
float smoothTime = 1f;
Vector3 velocity;
Vector3 targetPosition = target.TransformPoint(new Vector3(0, 5, -10));
// Smoothly move the camera towards that target position
transform.position = Vector3.SmoothDamp(transform.position, targetPosition, ref velocity, smoothTime);
// A Quaternion stores the rotation of the Transform in world space.
// Quaternions are based on complex numbers and don't suffer from gimbal lock.
// Unity internally uses Quaternions to represent all rotations.
transform.rotation = new Quaternion(rotx, roty, rotz, rotw);
// Transform.eulerAngles represents rotation in world space.
// It is important to understand that although you are providing X, Y, and Z rotation values to describe your rotation
// those values are not stored in the rotation. Instead, the X, Y & Z values are converted to the Quaternion's internal format.
transform.eulerAngles = Vector3(rotx, roty, rotz);
// Applies rotation around all the given axes.
public void Rotate(Vector3 eulers, Space relativeTo = Space.Self);
public void Rotate(float xAngle, float yAngle, float zAngle, Space relativeTo = Space.Self);
transform.Rotate(rotx, roty, rotz);
// Rotates the transform about axis passing through point in world coordinates by angle degrees.
public void RotateAround(Vector3 point, Vector3 axis, float angle);
// Spin the object around the target at 20 degrees/second.
Transform target;
transform.RotateAround(target.position, Vector3.up, 20 * Time.deltaTime);
// Points the positive 'Z' (forward) side of an object at a position in world space.
public void LookAt(Transform target);
public void LookAt(Transform target, Vector3 worldUp = Vector3.up);
// Rotate the object's forward vector to point at the target Transform.
Transform target;
transform.LookAt(target);
// Same as above, but setting the worldUp parameter to Vector3.left in this example turns the object on its side.
transform.LookAt(target, Vector3.left);
// Creates a rotation with the specified forward and upwards directions.
public static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up);
// The following code rotates the object towards a target object.
Vector3 direction = target.position - transform.position;
Quaternion rotation = Quaternion.LookRotation(direction);
transform.rotation = rotation;
// Creates a rotation (a Quaternion) which rotates from fromDirection to toDirection.
public static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection);
// Sets the rotation so that the transform's y-axis goes along the z-axis.
transform.rotation = Quaternion.FromToRotation(Vector3.up, transform.forward);
// Converts a rotation to angle-axis representation (angles in degrees).
// In other words, extracts the angle as well as the axis that this quaternion represents.
public void ToAngleAxis(out float angle, out Vector3 axis);
// Extracts the angle - axis rotation from the transform rotation
float angle = 0.0f;
Vector3 axis = Vector3.zero;
transform.rotation.ToAngleAxis(out angle, out axis);
void FixedUpdate() {
// Bit shift the index of the layer (8) to get a bit mask
int layerMask = 1 << 8;
// This would cast rays only against colliders in layer 8.
// But instead we want to collide against everything except layer 8. The ~ operator does this, it inverts a bitmask.
layerMask = ~layerMask;
RaycastHit hit;
// Does the ray intersect any objects excluding the player layer
if (Physics.Raycast(transform.position, transform.TransformDirection(Vector3.forward), out hit, Mathf.Infinity, layerMask)) {
Debug.DrawRay(transform.position, transform.TransformDirection(Vector3.forward) * hit.distance, Color.yellow);
Debug.Log("Did Hit");
}
}
// Makes the collision detection system ignore all collisions between collider1 and collider2.
public static void IgnoreCollision(Collider collider1, Collider collider2, bool ignore = true);
// Here we're disabling the collision detection between the colliders of ally and bullet objects.
Transform bullet;
Transform ally;
Physics.IgnoreCollision(bullet.GetComponent<Collider>(), ally.GetComponent<Collider>());
// Returns true during the frame the user starts pressing down the key
if (Input.GetKeyDown(KeyCode.Space)) {
Debug.Log("Space key was pressed");
}
// Jump is also set to space in Input Manager
if (Input.GetButtonDown("Jump")) {
Debug.Log("Do something");
}
if (Input.GetAxis("Mouse X") < 0) {
Debug.Log("Mouse moved left");
}
if (Input.GetAxis("Mouse Y") > 0) {
Debug.Log("Mouse moved up");
}
if (Input.GetMouseButtonDown(0)) {
Debug.Log("Pressed primary button.");
}
if (Input.GetMouseButtonDown(1)) {
Debug.Log("Pressed secondary button.");
}
if (Input.GetMouseButtonDown(2)) {
Debug.Log("Pressed middle click.");
}
if (Input.touchCount > 0) {
touch = Input.GetTouch(0);
if (touch.phase == TouchPhase.Began) {
Debug.Log("Touch began");
}
if (touch.phase == TouchPhase.Moved) {
Debug.Log("Touch moves");
}
if (touch.phase == TouchPhase.Ended) {
Debug.Log("Touch ended");
}
}
// Button is used to handle user clicks and interactions.
// Attach this script to a Button component to respond to button clicks.
using UnityEngine.UI;
Button myButton = GetComponent<Button>();
myButton.onClick.AddListener(MyButtonClickHandler);
void MyButtonClickHandler() {
Debug.Log("Button Clicked!");
}
// Slider is used for selecting a value within a range.
// Attach this script to a Slider component to respond to value changes.
using UnityEngine.UI;
Slider mySlider = GetComponent<Slider>();
mySlider.onValueChanged.AddListener(MySliderValueChangedHandler);
void MySliderValueChangedHandler(float value) {
Debug.Log("Slider Value: " + value);
}
public class PlayAudio : MonoBehaviour {
public AudioSource audioSource;
void Start() {
// Calling Play on an Audio Source that is already playing will make it start from the beginning
audioSource.Play();
}
}
Coroutines in Unity are a powerful feature that allows you to pause the execution of a function and resume it later. This is particularly useful for tasks that need to be spread over several frames, such as animations, waiting for a condition to be met, or handling asynchronous operations.
using UnityEngine;
using System.Collections;
public class CoroutineExample : MonoBehaviour {
void Start() {
// Start the coroutine
StartCoroutine(ExampleCoroutine());
}
IEnumerator ExampleCoroutine() {
Debug.Log("Coroutine started");
// Wait for 2 seconds
yield return new WaitForSeconds(2);
Debug.Log("Coroutine resumed after 2 seconds");
}
}
Coroutines can be used to perform repeated actions with a delay between each iteration.
IEnumerator RepeatActionCoroutine() {
while (true) {
Debug.Log("Action performed");
// Wait for 1 second before repeating
yield return new WaitForSeconds(1);
}
}
// Start the coroutine
StartCoroutine(RepeatActionCoroutine());
Coroutines can also wait for a condition to be true before continuing execution.
IEnumerator WaitForConditionCoroutine() {
Debug.Log("Waiting for condition...");
// Wait until the condition is met
yield return new WaitUntil(() => SomeConditionIsTrue());
Debug.Log("Condition met, resuming coroutine");
}
bool SomeConditionIsTrue() {
// Replace with your actual condition
return Time.time > 5;
}
// Start the coroutine
StartCoroutine(WaitForConditionCoroutine());
Coroutines can be used to handle events over time, such as fading out a UI element.
IEnumerator FadeOutCoroutine(CanvasGroup canvasGroup, float duration) {
float startAlpha = canvasGroup.alpha;
float rate = 1.0f / duration;
float progress = 0.0f;
while (progress < 1.0f) {
canvasGroup.alpha = Mathf.Lerp(startAlpha, 0, progress);
progress += rate * Time.deltaTime;
yield return null; // Wait for the next frame
}
canvasGroup.alpha = 0;
}
// Usage
CanvasGroup myCanvasGroup = GetComponent<CanvasGroup>();
StartCoroutine(FadeOutCoroutine(myCanvasGroup, 2.0f));
You can stop a coroutine using StopCoroutine()
or StopAllCoroutines()
.
Coroutine myCoroutine;
void Start() {
myCoroutine = StartCoroutine(ExampleCoroutine());
}
void StopMyCoroutine() {
if (myCoroutine != null) {
StopCoroutine(myCoroutine);
}
}
void StopAllMyCoroutines() {
StopAllCoroutines();
}
- Coroutines are not threads. They run on the main thread and are subject to the same performance constraints.
- Use
yield return null;
to wait for the next frame. - Use
yield return new WaitForSeconds(seconds);
to wait for a specific amount of time. - Use
yield return new WaitUntil(() => condition);
to wait until a condition is true. - Coroutines can be nested, and you can yield return other coroutines.
Unity provides several ways to handle events in your games. Here are the main approaches:
UnityEvents are serializable events that can be configured in the Inspector and used in scripts.
using UnityEngine;
using UnityEngine.Events;
// Basic UnityEvent
public class BasicEventExample : MonoBehaviour {
// This will show up in the inspector
public UnityEvent onGameStart;
void Start() {
// Invoke the event
onGameStart?.Invoke();
}
}
// UnityEvent with parameters
[System.Serializable]
public class ScoreEvent : UnityEvent<int> { }
public class ParameterizedEventExample : MonoBehaviour {
public ScoreEvent onScoreChanged;
private int score = 0;
public void AddScore(int points) {
score += points;
onScoreChanged?.Invoke(score);
}
}
Traditional C# events provide a more code-based approach to event handling.
Delegates are type-safe function pointers, and events are a way to broadcast messages to multiple listeners.
public class GameEvents : MonoBehaviour {
// Delegate definition
public delegate void GameStateHandler();
public delegate void ScoreHandler(int newScore);
// Event declaration
public static event GameStateHandler OnGameStart;
public static event GameStateHandler OnGameOver;
public static event ScoreHandler OnScoreChanged;
// Methods to trigger events
public static void TriggerGameStart() {
OnGameStart?.Invoke();
}
public static void TriggerGameOver() {
OnGameOver?.Invoke();
}
public static void TriggerScoreChanged(int newScore) {
OnScoreChanged?.Invoke(newScore);
}
}
// Example usage in another class
public class Player : MonoBehaviour {
void OnEnable() {
// Subscribe to events
GameEvents.OnGameStart += HandleGameStart;
GameEvents.OnGameOver += HandleGameOver;
}
void OnDisable() {
// Unsubscribe from events
GameEvents.OnGameStart -= HandleGameStart;
GameEvents.OnGameOver -= HandleGameOver;
}
private void HandleGameStart() {
Debug.Log("Game Started!");
}
private void HandleGameOver() {
Debug.Log("Game Over!");
}
}
// ScriptableObjects are data containers that you can use to save large amounts of data, independent of class instances.
[CreateAssetMenu(fileName = "NewData", menuName = "ScriptableObjects/Data")]
public class Data : ScriptableObject {
public string dataName;
public int dataValue;
}
// Usage
Data myData = ScriptableObject.CreateInstance<Data>();
// Custom Editor scripts allow you to create custom inspectors and windows in the Unity Editor.
using UnityEditor;
using UnityEngine;
[CustomEditor(typeof(MyComponent))]
public class MyComponentEditor : Editor {
public override void OnInspectorGUI() {
DrawDefaultInspector();
MyComponent myComponent = (MyComponent)target;
if (GUILayout.Button("Do Something")) {
myComponent.DoSomething();
}
}
}
// Define singleton class
public class SingletonClass: MonoBehaviour {
private static SingletonClass instance;
public static SingletonClass Instance { get { return instance; } }
private void Awake() {
if (instance != null && instance != this) {
Destroy(this.gameObject);
} else {
instance = this;
}
}
private void SomeFunction() {
}
}
// Use it in another class
public class AnotherClass: MonoBehaviour {
private void Awake() {
SingletonClass.Instance.SomeFunction();
}
}
// Interface for the enemy
public interface IEnemy {
void Attack();
void TakeDamage(int damage);
}
// Concrete implementation of the enemy: Goblin
public class Goblin : IEnemy {
public void Attack() => Debug.Log("Goblin attacking!");
public void TakeDamage(int damage) => Debug.Log($"Goblin taking {damage} damage.");
}
// Concrete implementation of the enemy: Orc
public class Orc : IEnemy {
public void Attack() => Debug.Log("Orc attacking!");
public void TakeDamage(int damage) => Debug.Log($"Orc taking {damage} damage.");
}
// Factory interface for creating enemies
public interface IEnemyFactory {
IEnemy CreateEnemy();
}
// Concrete implementation of the factory: GoblinFactory
public class GoblinFactory : IEnemyFactory {
public IEnemy CreateEnemy() => new Goblin();
}
// Concrete implementation of the factory: OrcFactory
public class OrcFactory : IEnemyFactory {
public IEnemy CreateEnemy() => new Orc();
}
// Client class using the factory to create and interact with enemies
public class GameManager : MonoBehaviour {
private void Start() {
InteractWithEnemy(new GoblinFactory());
InteractWithEnemy(new OrcFactory());
// You can introduce new concrete implementations of IEnemy
// without modifying existing client code
// adhering to the open/closed principle of SOLID design
}
private void InteractWithEnemy(IEnemyFactory factory) {
IEnemy enemy = factory.CreateEnemy();
// Consistent interaction regardless of the enemy type
enemy.Attack();
enemy.TakeDamage(20);
}
}
// Observer interface
public interface IObserver {
void UpdateObserver(string message);
}
// Concrete implementation of the observer
public class ConcreteObserver : IObserver {
private string name;
public ConcreteObserver(string name) {
this.name = name;
}
public void UpdateObserver(string message) {
Debug.Log($"{name} received message: {message}");
}
}
// Subject class
public class Subject {
private List<IObserver> observers = new List<IObserver>();
public void AddObserver(IObserver observer) {
observers.Add(observer);
}
public void RemoveObserver(IObserver observer) {
observers.Remove(observer);
}
public void NotifyObservers(string message) {
foreach (var observer in observers) {
observer.UpdateObserver(message);
}
}
}
// Example of usage
public class ObserverExample : MonoBehaviour {
private void Start() {
Subject subject = new Subject();
ConcreteObserver observer1 = new ConcreteObserver("Observer 1");
ConcreteObserver observer2 = new ConcreteObserver("Observer 2");
subject.AddObserver(observer1);
subject.AddObserver(observer2);
// Notify all observers
subject.NotifyObservers("Hello Observers!");
}
}
// Command interface
public interface ICommand {
void Execute();
}
// Concrete command classes
public class MoveCommand : ICommand {
private Transform transform;
private Vector3 direction;
private float distance;
public MoveCommand(Transform transform, Vector3 direction, float distance) {
this.transform = transform;
this.direction = direction;
this.distance = distance;
}
public void Execute() {
transform.Translate(direction * distance);
}
}
// Invoker class
public class CommandInvoker {
private Stack<ICommand> commandStack = new Stack<ICommand>();
public void ExecuteCommand(ICommand command) {
commandStack.Push(command);
command.Execute();
}
public void Undo() {
if (commandStack.Count > 0) {
var command = commandStack.Pop();
// Implement an undo method if necessary
}
}
}
// Usage
public class CommandUser : MonoBehaviour {
private CommandInvoker invoker = new CommandInvoker();
void Update() {
if (Input.GetKeyDown(KeyCode.UpArrow)) {
ICommand moveUp = new MoveCommand(transform, Vector3.up, 1.0f);
invoker.ExecuteCommand(moveUp);
}
// Add other directions and invoker.Undo() for undos
}
}
// State interface
public interface IState {
void Enter();
void Execute();
void Exit();
}
// Concrete state classes
public class IdleState : IState {
private readonly StateMachine stateMachine;
public IdleState(StateMachine stateMachine) {
this.stateMachine = stateMachine;
}
public void Enter() {
Debug.Log("Entered Idle State");
}
public void Execute() {
Debug.Log("Executing Idle State");
}
public void Exit() {
Debug.Log("Exited Idle State");
}
}
public class MoveState : IState {
private readonly StateMachine stateMachine;
public MoveState(StateMachine stateMachine) {
this.stateMachine = stateMachine;
}
public void Enter() {
Debug.Log("Entered Move State");
}
public void Execute() {
Debug.Log("Executing Move State");
}
public void Exit() {
Debug.Log("Exited Move State");
}
}
// StateMachine class
public class StateMachine {
private IState currentState;
public void ChangeState(IState newState) {
if (currentState != null) {
currentState.Exit();
}
currentState = newState;
currentState.Enter();
}
public void Update() {
if (currentState != null) {
currentState.Execute();
}
}
}
// Character class that uses the StateMachine
public class Character : MonoBehaviour {
private StateMachine stateMachine;
private void Start() {
stateMachine = new StateMachine();
stateMachine.ChangeState(new IdleState(stateMachine));
}
private void Update() {
stateMachine.Update();
// Example state transitions based on conditions
if (Input.GetKeyDown(KeyCode.Space)) {
stateMachine.ChangeState(new MoveState(stateMachine));
}
}
}
// Strategy interface
public interface IAttackStrategy {
void Attack(Transform attacker, Transform target);
}
// Concrete strategy classes
public class MeleeAttackStrategy : IAttackStrategy {
public void Attack(Transform attacker, Transform target) {
float meleeRange = 2f;
if (Vector3.Distance(attacker.position, target.position) <= meleeRange) {
Debug.Log("Performing melee attack!");
// Implement melee attack logic here
} else {
Debug.Log("Target is too far for melee attack");
}
}
}
public class RangedAttackStrategy : IAttackStrategy {
public void Attack(Transform attacker, Transform target) {
Debug.Log("Performing ranged attack!");
// Implement ranged attack logic here, e.g., instantiate a projectile
}
}
public class AreaOfEffectAttackStrategy : IAttackStrategy {
public void Attack(Transform attacker, Transform target) {
Debug.Log("Performing area of effect attack!");
// Implement AoE attack logic here, e.g., create an explosion effect
}
}
// Context class that uses the strategy
public class Character : MonoBehaviour {
private IAttackStrategy attackStrategy;
public Transform target;
public void SetAttackStrategy(IAttackStrategy strategy) {
attackStrategy = strategy;
}
public void PerformAttack() {
if (attackStrategy != null && target != null) {
attackStrategy.Attack(transform, target);
}
}
}
// Usage example
public class GameManager : MonoBehaviour {
public Character character;
private void Start() {
character.SetAttackStrategy(new MeleeAttackStrategy());
}
private void Update() {
if (Input.GetKeyDown(KeyCode.M)) {
character.SetAttackStrategy(new MeleeAttackStrategy());
}
else if (Input.GetKeyDown(KeyCode.R)) {
character.SetAttackStrategy(new RangedAttackStrategy());
}
else if (Input.GetKeyDown(KeyCode.A)) {
character.SetAttackStrategy(new AreaOfEffectAttackStrategy());
}
if (Input.GetKeyDown(KeyCode.Space)) {
character.PerformAttack();
}
}
}
using System.Collections.Generic;
using UnityEngine;
public class ObjectPool : MonoBehaviour
{
[System.Serializable]
public class Pool
{
public string tag;
public GameObject prefab;
public int size;
}
public List<Pool> pools;
public Dictionary<string, Queue<GameObject>> poolDictionary;
private void Start()
{
poolDictionary = new Dictionary<string, Queue<GameObject>>();
foreach (Pool pool in pools)
{
Queue<GameObject> objectPool = new Queue<GameObject>();
for (int i = 0; i < pool.size; i++)
{
GameObject obj = Instantiate(pool.prefab);
obj.SetActive(false);
objectPool.Enqueue(obj);
}
poolDictionary.Add(pool.tag, objectPool);
}
}
public GameObject SpawnFromPool(string tag, Vector3 position, Quaternion rotation)
{
if (!poolDictionary.ContainsKey(tag))
{
Debug.LogWarning("Pool with tag " + tag + " doesn't exist.");
return null;
}
GameObject objectToSpawn = poolDictionary[tag].Dequeue();
objectToSpawn.SetActive(true);
objectToSpawn.transform.position = position;
objectToSpawn.transform.rotation = rotation;
poolDictionary[tag].Enqueue(objectToSpawn);
return objectToSpawn;
}
}
// Usage example
public class GameManager : MonoBehaviour
{
public ObjectPool objectPool;
private void Update()
{
if (Input.GetKeyDown(KeyCode.Space))
{
objectPool.SpawnFromPool("Bullet", transform.position, Quaternion.identity);
}
}
}
RaycastHit hit;
// Unlike this example, most of the time you should pass a layerMask as the last option to hit only to the ground
if (Physics.Raycast(transform.position, -Vector3.up, out hit, 0.5f)) {
Debug.log("Hit something below!");
}
Animator animator;
Transform transform = animator.GetBoneTransform(HumanBodyBones.Head);
var camPosition = Camera.main.transform.position;
transform.rotation = Quaternion.LookRotation(transform.position - camPosition);
var nextSceneToLoad = SceneManager.GetActiveScene().buildIndex + 1;
var totalSceneCount = SceneManager.sceneCountInBuildSettings;
if (nextSceneToLoad < totalSceneCount) {
SceneManager.LoadScene(nextSceneToLoad);
}