-
Notifications
You must be signed in to change notification settings - Fork 88
/
train_bi_lstm.py
216 lines (182 loc) · 7.23 KB
/
train_bi_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from __future__ import print_function
import sys, random
sys.path.insert(0, "../../python")
import numpy as np
import mxnet as mx
import logging
from symbol.bi_lstm import bi_lstm_unroll
from io import BytesIO
import cv2, random
import cPickle
import os
class SimpleBatch(object):
def __init__(self, data_names, data, label_names, label):
self.data = data
self.label = label
self.data_names = data_names
self.label_names = label_names
self.pad = 0
self.index = None # TODO: what is index?
@property
def provide_data(self):
return [(n, x.shape) for n, x in zip(self.data_names, self.data)]
@property
def provide_label(self):
return [(n, x.shape) for n, x in zip(self.label_names, self.label)]
class OCRIter(mx.io.DataIter):
def __init__(self, batch_size, classes, data_shape, num_label, init_states, shuffle=True, train_flag=True):
super(OCRIter, self).__init__()
self.batch_size = batch_size
self.data_shape = data_shape
self.num_label = num_label
self.init_states = init_states
self.init_state_arrays = [mx.nd.zeros(x[1]) for x in init_states]
self.classes = classes
if train_flag:
self.data_path = os.path.join(os.getcwd(), 'data', 'train', 'text')
self.label_path = os.path.join(os.getcwd(), 'data', 'train')
else:
self.data_path = os.path.join(os.getcwd(), 'data', 'test', 'text')
self.label_path = os.path.join(os.getcwd(), 'data', 'test')
self.image_set_index = self._load_image_set_index(shuffle)
self.count = len(self.image_set_index) / self.batch_size
self.gt = self._label_path_from_index()
self.provide_data = [('data', (batch_size, data_shape[0]*data_shape[1]))] + init_states
self.provide_label = [('label', (self.batch_size, num_label))]
def __iter__(self):
#print('iter')
init_state_names = [x[0] for x in self.init_states]
for k in range(self.count):
data = []
label = []
for i in range(self.batch_size):
img_name = self.image_set_index[i + k*self.batch_size]
img = cv2.imread(os.path.join(self.data_path, img_name + '.jpg'))
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, self.data_shape)
#print(img)
img = img.transpose(1, 0)
img = img.reshape((data_shape[0] * data_shape[1]))
img = np.multiply(img, 1/255.0)
#print(img)
data.append(img)
ret = np.zeros(self.num_label, int)
plate_str = self.gt[int(img_name)]
#print(plate_str)
for number in range(len(plate_str)):
ret[number] = self.classes.index(plate_str[number]) + 1
#print(ret)
label.append(ret)
data_all = [mx.nd.array(data)] + self.init_state_arrays
label_all = [mx.nd.array(label)]
data_names = ['data'] + init_state_names
label_names = ['label']
data_batch = SimpleBatch(data_names, data_all, label_names, label_all)
yield data_batch
def reset(self):
pass
def _load_image_set_index(self, shuffle):
assert os.path.isdir(self.data_path), 'Path does not exist: {}'.format(image_set_path)
image_set_index = []
list_dir = os.walk(self.data_path)
for root, _, image_names in list_dir:
for name in image_names:
image_set_index.append(name.split('.')[0])
if shuffle:
np.random.shuffle(image_set_index)
return image_set_index
def _label_path_from_index(self):
label_file = os.path.join(self.label_path, 'gt.pkl')
assert os.path.exists(label_file), 'Path does not exist: {}'.format(label_file)
gt_file = open(label_file, 'rb')
label_file = cPickle.load(gt_file)
gt_file.close()
return label_file
BATCH_SIZE = 32
SEQ_LENGTH = 80
def ctc_label(p):
ret = []
p1 = [0] + p
for i in range(len(p)):
c1 = p1[i]
c2 = p1[i+1]
if c2 == 0 or c2 == c1:
continue
ret.append(c2)
return ret
def remove_blank(l):
ret = []
for i in range(len(l)):
if l[i] == 0:
break
ret.append(l[i])
return ret
def Accuracy(label, pred):
global BATCH_SIZE
global SEQ_LENGTH
hit = 0.
total = 0.
for i in range(BATCH_SIZE):
l = remove_blank(label[i])
p = []
for k in range(SEQ_LENGTH):
p.append(np.argmax(pred[k * BATCH_SIZE + i]))
p = ctc_label(p)
if len(p) == len(l):
match = True
for k in range(len(p)):
if p[k] != int(l[k]):
match = False
break
if match:
hit += 1.0
total += 1.0
return hit / total
if __name__ == '__main__':
# set up logger
log_file_name = "bi_lstm_plate.log"
log_file = open(log_file_name, 'w')
log_file.close()
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fh = logging.FileHandler(log_file_name)
logger.addHandler(fh)
prefix = os.path.join(os.getcwd(), 'model', 'bi_lstm_ctc')
num_hidden = 100
num_lstm_layer = 2
num_epoch = 100
learning_rate = 0.001
momentum = 0.9
num_label = 9
data_shape = (80, 30)
classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G",
"H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
num_classes = len(classes) + 1
contexts = [mx.context.gpu(0)]
def sym_gen(seq_len):
return bi_lstm_unroll(num_lstm_layer, seq_len,
num_hidden=num_hidden, num_classes = num_classes,
num_label = num_label)
init_c = [('l%d_init_c'%l, (BATCH_SIZE, num_hidden)) for l in range(num_lstm_layer*2)]
init_h = [('l%d_init_h'%l, (BATCH_SIZE, num_hidden)) for l in range(num_lstm_layer*2)]
init_states = init_c + init_h
data_train = OCRIter(BATCH_SIZE, classes, data_shape, num_label, init_states)
data_val = OCRIter(BATCH_SIZE, classes, data_shape, num_label, init_states, train_flag=False)
symbol = sym_gen(SEQ_LENGTH)
model = mx.model.FeedForward(ctx=contexts,
symbol=symbol,
num_epoch=num_epoch,
learning_rate=learning_rate,
momentum=momentum,
wd=0.00001,
initializer=mx.init.Xavier(factor_type="in", magnitude=2.34))
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
logger.info('begin fit')
model.fit(X=data_train, eval_data=data_val,
eval_metric = mx.metric.np(Accuracy),
batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 50), logger = logger,
epoch_end_callback = mx.callback.do_checkpoint(prefix, 1))
model.save("bi_lctc")