forked from kckotcherlakota/PV_defect_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Train_Test_Valid.py
481 lines (389 loc) · 20.7 KB
/
Train_Test_Valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""
@author: Soroosh Tayebi Arasteh <soroosh.arasteh@fau.de>
"""
#System Modules
from enum import Enum
import datetime
import os
import time
# Deep Learning Modules
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
from sklearn.metrics import multilabel_confusion_matrix
import torch.nn.functional as F
from torchvision import models
# User Defined Modules
from configs.serde import *
from utils.stopping import EarlyStoppingCallback
import pdb
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
epsilon = 1e-15
class Training:
'''
This class represents training (including validation) process.
'''
def __init__(self, cfg_path, stopping_patience, num_epochs=10, RESUME=False, torch_seed=None):
'''
:cfg_path (string): path of the experiment config file
:torch_seed (int): Seed used for random generators in PyTorch functions
:stopping_patience: Number of epochs that we had no improvement in the loss
and then we should stop training.
'''
self.params = read_config(cfg_path)
self.cfg_path = cfg_path
self.RESUME = RESUME
self.best_loss = float('inf')
self.best_F1 = 0
if RESUME == False:
self.model_info = self.params['Network']
self.model_info['seed'] = torch_seed or self.model_info['seed']
self.epoch = 0
self.num_epochs = num_epochs
if 'trained_time' in self.model_info:
self.raise_training_complete_exception()
self.setup_cuda()
self.writer = SummaryWriter(log_dir=os.path.join(self.params['tb_logs_path']))
def setup_cuda(self, cuda_device_id=0):
if torch.cuda.is_available():
torch.backends.cudnn.fastest = True
torch.cuda.set_device(cuda_device_id)
self.device = torch.device('cuda')
torch.cuda.manual_seed_all(self.model_info['seed'])
torch.manual_seed(self.model_info['seed'])
else:
self.device = torch.device('cpu')
def setup_model(self, model, optimiser, optimiser_params, loss_function, pos_weight=None):
'''
:param model: an object of our network
:param optimiser: an object of our optimizer, e.g. torch.optim.SGD
:param optimiser_params: is a dictionary containing parameters for the optimiser, e.g. {'lr':7e-3}
'''
# number of parameters of the model
print(f'\nThe model has {sum(p.numel() for p in model.parameters() if p.requires_grad):,} trainable parameters!\n')
# Tensor Board Graph
self.add_tensorboard_graph(model)
self.model = model.to(self.device)
self.optimiser = optimiser(self.model.parameters(), **optimiser_params)
self.loss_function = loss_function(pos_weight=pos_weight.to(self.device))
if 'retrain' in self.model_info and self.model_info['retrain'] == True:
self.load_pretrained_model()
# Saves the model, optimiser,loss function name for writing to config file
# self.model_info['model_name'] = model.__name__
self.model_info['optimiser'] = optimiser.__name__
self.model_info['loss_function'] = loss_function.__name__
self.model_info['optimiser_params'] = optimiser_params
self.params['Network'] = self.model_info
write_config(self.params, self.cfg_path, sort_keys=True)
def load_checkpoint(self, model, optimiser, optimiser_params, loss_function, pos_weight=None):
checkpoint = torch.load(self.params['network_output_path'] + '/' + self.params['checkpoint_name'])
self.device = None
self.model_info = checkpoint['model_info']
self.setup_cuda()
self.model = model.to(self.device)
self.optimiser = optimiser(self.model.parameters(), **optimiser_params)
self.loss_function = loss_function(pos_weight=pos_weight.to(self.device))
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimiser.load_state_dict(checkpoint['optimizer_state_dict'])
self.epoch = checkpoint['epoch']
self.num_epochs = checkpoint['num_epoch']
self.loss_function = checkpoint['loss']
self.best_loss = checkpoint['best_loss']
self.best_F1 = checkpoint['best_F1']
self.writer = SummaryWriter(log_dir=os.path.join(self.params['tb_logs_path']), purge_step=self.epoch + 1)
def add_tensorboard_graph(self, model):
'''Creates a tensor board graph for network visualisation'''
dummy_input = torch.rand(1, 3, 300, 300) # To show tensor sizes in graph
self.writer.add_graph(model, dummy_input)
def epoch_time(self, start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def execute_training(self, train_loader, valid_loader=None, batch_size=1):
'''
Executes training by running training and validation at each epoch
'''
total_start_time = time.time()
# reads param file again to include changes if any
self.params = read_config(self.cfg_path)
if self.RESUME == False:
# Checks if already trained
if 'trained_time' in self.model_info:
self.raise_training_complete_exception
# CODE FOR CONFIG FILE TO RECORD MODEL PARAMETERS
self.model_info = self.params['Network']
self.model_info['num_epochs'] = self.num_epochs or self.model_info['num_epochs']
print('Starting time:' + str(datetime.datetime.now()) +'\n')
for epoch in range(self.num_epochs - self.epoch):
self.epoch += 1
start_time = time.time()
print('Training (intermediate metrics):')
train_loss, train_acc, train_F1 = self.train_epoch(train_loader, batch_size)
if valid_loader:
print('\nValidation (intermediate metrics):')
valid_loss, valid_acc, valid_F1 = self.valid_epoch(valid_loader, batch_size)
end_time = time.time()
epoch_mins, epoch_secs = self.epoch_time(start_time, end_time)
total_mins, total_secs = self.epoch_time(total_start_time, end_time)
# Writes to the tensorboard after number of steps specified.
if valid_loader:
self.calculate_tb_stats(train_loss, train_F1, valid_loss, valid_F1)
else:
self.calculate_tb_stats(train_loss, train_F1)
# Saves information about training to config file
self.model_info['num_steps'] = self.epoch
self.model_info['trained_time'] = "{:%B %d, %Y, %H:%M:%S}".format(datetime.datetime.now())
self.params['Network'] = self.model_info
write_config(self.params, self.cfg_path, sort_keys=True)
'''Saving the model'''
if valid_loader:
if valid_loss < self.best_loss:
self.best_loss = valid_loss
torch.save(self.model.state_dict(), self.params['network_output_path'] + '/' +
self.params['trained_model_name'])
else:
if train_loss < self.best_loss:
self.best_loss = train_loss
torch.save(self.model.state_dict(), self.params['network_output_path'] + '/' +
self.params['trained_model_name'])
# Saving based on the F1 score
if valid_F1 > self.best_F1:
self.best_F1 = valid_F1
torch.save(self.model.state_dict(), self.params['network_output_path'] + '/F1based_' +
self.params['trained_model_name'])
# Saving every 20 epochs
if (self.epoch) % self.params['network_save_freq'] == 0:
torch.save(self.model.state_dict(), self.params['network_output_path'] + '/' +
'epoch{}_'.format(self.epoch) + self.params['trained_model_name'])
# Save a checkpoint
torch.save({'epoch': self.epoch, 'best_F1': self.best_F1,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimiser.state_dict(),
'loss': self.loss_function, 'num_epoch': self.num_epochs,
'model_info': self.model_info, 'best_loss': self.best_loss},
self.params['network_output_path'] + '/' + self.params['checkpoint_name'])
# Print accuracy, F1, and loss after each epoch
print('\n---------------------------------------------------------------')
print(f'Epoch: {self.epoch:02} | Epoch Time: {epoch_mins}m {epoch_secs}s | '
f'Total Time so far: {total_mins}m {total_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc * 100:.2f}% | Train F1: {train_F1:.3f}')
if valid_loader:
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc * 100:.2f}% | Val. F1: {valid_F1:.3f}')
print('---------------------------------------------------------------\n')
#TODO: earlystoping goes here!
# best_valid_loss = self.stopper.step(current_loss=valid_loss, best_loss=best_valid_loss)
# stopping_flag = self.stopper.should_stop()
# if stopping_flag == True:
# break
def train_epoch(self, train_loader, batch_size):
'''
Train using one single iteration of all messages (epoch) in dataset
'''
print("Epoch [{}/{}]".format(self.epoch, self.model_info['num_epochs']))
self.model.train()
previous_idx = 0
# initializing the loss list
batch_loss = 0
batch_count = 0
# initializing the caches
logits_with_sigmoid_cache = torch.from_numpy(np.zeros((len(train_loader) * batch_size, 2)))
logits_no_sigmoid_cache = torch.from_numpy(np.zeros_like(logits_with_sigmoid_cache))
labels_cache = torch.from_numpy(np.zeros_like(logits_with_sigmoid_cache))
for idx, (image, label) in enumerate(train_loader):
image = image.to(self.device)
label = label.to(self.device)
#Forward pass.
self.optimiser.zero_grad()
with torch.set_grad_enabled(True):
output = self.model(image)
label = label.float()
output_sigmoided = F.sigmoid(output)
output_sigmoided = (output_sigmoided > 0.5).float()
# saving the logits and labels of this batch
for i, batch in enumerate(output_sigmoided):
logits_with_sigmoid_cache[idx * batch_size + i] = batch
for i, batch in enumerate(output):
logits_no_sigmoid_cache[idx * batch_size + i] = batch
for i, batch in enumerate(label):
labels_cache[idx * batch_size + i] = batch
# Loss
loss = self.loss_function(output, label)
batch_loss += loss.item()
batch_count += 1
#Backward and optimize
loss.backward()
self.optimiser.step()
# Prints loss statistics after number of steps specified.
if (idx + 1)%self.params['display_stats_freq'] == 0:
print('Epoch {:02} | Batch {:03}-{:03} | Train loss: {:.3f}'.
format(self.epoch, previous_idx, idx, batch_loss / batch_count))
previous_idx = idx + 1
batch_loss = 0
batch_count = 0
'''Metrics calculation (macro) over the whole set'''
crack_confusion, inactive_confusion = multilabel_confusion_matrix(labels_cache.cpu(), logits_with_sigmoid_cache.cpu())
# Crack class
TN = crack_confusion[0, 0]
FP = crack_confusion[0, 1]
FN = crack_confusion[1, 0]
TP = crack_confusion[1, 1]
accuracy_Crack = (TP + TN) / (TP + TN + FP + FN + epsilon)
F1_Crack = 2 * TP / (2 * TP + FN + FP + epsilon)
# Inactive class
TN_inactive = inactive_confusion[0, 0]
FP_inactive = inactive_confusion[0, 1]
FN_inactive = inactive_confusion[1, 0]
TP_inactive = inactive_confusion[1, 1]
accuracy_inactive = (TP_inactive + TN_inactive) / (TP_inactive + TN_inactive + FP_inactive + FN_inactive + epsilon)
F1_inactive = 2 * TP_inactive / (2 * TP_inactive + FN_inactive + FP_inactive + epsilon)
# Macro averaging
epoch_accuracy = (accuracy_Crack + accuracy_inactive) / 2
epoch_f1_score = (F1_Crack + F1_inactive) / 2
loss = self.loss_function(logits_no_sigmoid_cache.to(self.device), labels_cache.to(self.device))
epoch_loss = loss.item()
return epoch_loss, epoch_accuracy, epoch_f1_score
def valid_epoch(self, valid_loader, batch_size):
'''Test (validation) model after an epoch and calculate loss on test dataset'''
print("Epoch [{}/{}]".format(self.epoch, self.model_info['num_epochs']))
self.model.eval()
previous_idx = 0
with torch.no_grad():
# initializing the loss list
batch_loss = 0
batch_count = 0
# initializing the caches
logits_with_sigmoid_cache = torch.from_numpy(np.zeros((len(valid_loader) * batch_size, 2)))
logits_no_sigmoid_cache = torch.from_numpy(np.zeros_like(logits_with_sigmoid_cache))
labels_cache = torch.from_numpy(np.zeros_like(logits_with_sigmoid_cache))
for idx, (image, label) in enumerate(valid_loader):
image = image.to(self.device)
label = label.to(self.device)
output = self.model(image)
label = label.float()
output_sigmoided = F.sigmoid(output)
output_sigmoided = (output_sigmoided > 0.5).float()
# saving the logits and labels of this batch
for i, batch in enumerate(output_sigmoided):
logits_with_sigmoid_cache[idx * batch_size + i] = batch
for i, batch in enumerate(output):
logits_no_sigmoid_cache[idx * batch_size + i] = batch
for i, batch in enumerate(label):
labels_cache[idx * batch_size + i] = batch
# Loss
loss = self.loss_function(output, label)
batch_loss += loss.item()
batch_count += 1
# Prints loss statistics after number of steps specified.
if (idx + 1)%self.params['display_stats_freq'] == 0:
print('Epoch {:02} | Batch {:03}-{:03} | Val. loss: {:.3f}'.
format(self.epoch, previous_idx, idx, batch_loss / batch_count))
previous_idx = idx + 1
batch_loss = 0
batch_count = 0
'''Metrics calculation (macro) over the whole set'''
crack_confusion, inactive_confusion = multilabel_confusion_matrix(labels_cache.cpu(), logits_with_sigmoid_cache.cpu())
# Crack class
TN = crack_confusion[0, 0]
FP = crack_confusion[0, 1]
FN = crack_confusion[1, 0]
TP = crack_confusion[1, 1]
accuracy_Crack = (TP + TN) / (TP + TN + FP + FN + epsilon)
F1_Crack = 2 * TP / (2 * TP + FN + FP + epsilon)
# Inactive class
TN_inactive = inactive_confusion[0, 0]
FP_inactive = inactive_confusion[0, 1]
FN_inactive = inactive_confusion[1, 0]
TP_inactive = inactive_confusion[1, 1]
accuracy_inactive = (TP_inactive + TN_inactive) / (TP_inactive + TN_inactive + FP_inactive + FN_inactive + epsilon)
F1_inactive = 2 * TP_inactive / (2 * TP_inactive + FN_inactive + FP_inactive + epsilon)
# Macro averaging
epoch_accuracy = (accuracy_Crack + accuracy_inactive) / 2
epoch_f1_score = (F1_Crack + F1_inactive) / 2
loss = self.loss_function(logits_no_sigmoid_cache.to(self.device), labels_cache.to(self.device))
epoch_loss = loss.item()
self.model.train()
return epoch_loss, epoch_accuracy, epoch_f1_score
def calculate_tb_stats(self, train_loss, train_F1, valid_loss=None, valid_F1=None):
'''Adds the statistics of metrics to the tensorboard'''
# Adds the metrics to TensorBoard
self.writer.add_scalar('Training' + '_Loss', train_loss, self.epoch)
self.writer.add_scalar('Training' + '_F1', train_F1, self.epoch)
if valid_loss:
self.writer.add_scalar('Validation' + '_Loss', valid_loss, self.epoch)
self.writer.add_scalar('Validation' + '_F1', valid_F1, self.epoch)
def raise_training_complete_exception(self):
raise Exception("Model has already been trained on {}. \n"
"1.To use this model as pre trained model and train again\n "
"create new experiment using create_retrain_experiment function.\n\n"
"2.To start fresh with same experiment name, delete the experiment \n"
"using delete_experiment function and create experiment "
" again.".format(self.model_info['trained_time']))
def load_pretrained_model():
# Load a pre-trained model from config file
# self.model.load_state_dict(torch.load(self.model_info['pretrain_model_path']))
# Load a pre-trained model from Torchvision
MODEL = models.resnet34(pretrained=True)
# for param in MODEL.parameters():
# param.requires_grad = False
MODEL.fc = nn.Sequential(
nn.Linear(512, 2))
for param in MODEL.fc.parameters():
param.requires_grad = True
return MODEL
class Prediction:
'''
This class represents prediction (testing) process similar to the Training class.
'''
def __init__(self, cfg_path):
'''
:cfg_path (string): path of the experiment config file
'''
self.params = read_config(cfg_path)
self.cfg_path = cfg_path
self.setup_cuda()
def setup_cuda(self, cuda_device_id=0):
'''Setup the CUDA device'''
if torch.cuda.is_available():
torch.backends.cudnn.fastest = True
torch.cuda.set_device(cuda_device_id)
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
def epoch_time(self, start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def setup_model(self, model, model_file_name=None):
if model_file_name == None:
model_file_name = self.params['trained_model_name']
# in case of pretrained model
model = load_pretrained_model()
self.model_p = model.to(self.device)
# Loads model from model_file_name and default network_output_path
# self.model_p.load_state_dict(torch.load(self.params['network_output_path'] + "/" + model_file_name))
self.model_p.load_state_dict(torch.load(self.params['network_output_path'] + "/epoch60_" + model_file_name))
def save_onnx(self, fn):
m = self.model_p.cpu()
m.eval()
x = torch.randn(1, 3, 300, 300, requires_grad=True)
y = self.model_p(x)
torch.onnx.export(m, # model being run
x, # model input (or a tuple for multiple inputs)
fn, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable lenght axes
'output': {0: 'batch_size'}})
class Mode(Enum):
'''
Class Enumerating the 3 modes of operation of the network.
This is used while loading datasets
'''
TRAIN = 0
VALID = 1
TEST = 2