- Note: This release (1.0 -> 2.0) signifies a major breaking revamp of the package. Users are advised to carefully review the release notes and documentation for detailed information on the changes and any necessary updates to their existing code.
- Implemented the
IncrementsMaxToxProb
class - Implemented
knit_print
methods for almost allcrmPack
classes to improve rendering in Markdown and Quarto documents. See the vignette for more details. - Provided basic support for ordinal CRM models. See the vignette for more details.
- Implemented
broom
-liketidy
methods for all concretecrmPack
classes. See the vignette for more details. - Removed
multiplot
function. Use Please use equivalent functionality in other packages, such ascowplot
orggpubr
. - Added new
DataGrouped
andDesignGrouped
classes with corresponding modelLogisticLogNormalGrouped
to support simultaneous dose escalation with monotherapy and combination therapy arms. - Created the
CrmPackClass
class as the ultimate ancestor of all othercrmPack
classes to allow identification of crmPack classes and simpler definition of generic methods. approximate
now returns alist
containing the fitted model and, optionally, aggplot
object of the approximated dose/toxicity curve.- Modified the wording of attribute of
stopTrial
's return value forStoppingMTDdistribution
objects to strictly match the definition given in the online documentation. The return value itself is unchanged. - Corrected the spelling of the name of the
messgae
[sic] attribute of the return value ofstopTrial
with signaturestopping = "StoppingTDCIRatio"
. - Changed the type of
ref_dose
in theLogisticNormalMixture
andLogisticNormalFixedMixture
classes frompositive_number
tonumeric
for consistency with other classes. - Added no-parameter constructor functions named
.Default<class name>
to provide usable instances of all concrete subclasses ofIncrements
,Model
,NextBest
andStopping
. - Added new function
dose_grid_range
that returns the range of doses in the dose grid. - Added new function
ngrid
that returns the number of doses in the dose grid. - Modified
efficacy-EffFlexi
method: allowed for vectorized dose;NA
is now returned for doses from outside of the dose grid range (and the warning is thrown). - Added new custom
checkmate
functioncheck_range
. - Added method
names
for objects of classSamples
. - Added method
size
for objects of classSamples
. - Added new custom
checkmate
functioncheck_length
. - Added
unique
flag toassert_probabilities
checkmate custom functions. - Created a new vignette which describes how to use certain functions and features
of
crmPack
after the major refactoring. - Removed
MASS
fromImports
andRcpp
,RcppArmadillo
fromSuggests
as it was used only in the some old development version. doselimit
argument innextBest
method is now specified asInf
instead ofnumeric(0)
.- Added new helper functions for
nextBest
methods, particularly for plotting and finding the dose closest to the grid. - Added new
NextBestNCRMLoss
class and correspondingnextBest
method. - Warning message not printed anymore by
nextBest
methods whendoselimit
not specified. - Set prototype for
target = 0.3
forNextBestMinDist
class. - Added new customized
checkmate
functions for probability values checking. - Renamed the argument of
derive
function frommtdSamples
tomtd_samples
inNextBestMTD
class. - Allowed for
from_prior
flag - argument tomodelspecs
function atGeneralModel
class. - Created new
ProbitLogNormalRel
model class to support the (standardized) dose. - Changed
ProbitLogNormal
so that it supports the log of (standardized) dose only. - Added logger feature. Its user interface consists of four functions:
enable_logging
,disable_logging
,is_logging_enabled
,log_trace
. - Re-factored
sampleSize
function so that it returns0
ifburnin > iterations
. - A vector under
t0
slot inDataDA
class must be sorted in ascending order. - Replaced warning with message when no
cohort
orID
is provided to the user constructorData
. - Introduced validation of the updated object for
update
methods for Data-like classes. Addedcheck
flag to possibly omit the validation of the updated object. - Set up the package to use testthat.
- Added lifecycle package.
- Include rolling CRM design, which was previously only available in a separate GitHub branch.
- Additional authors and change of maintainer.
- Included 'additional_stats' to add reporting of additional parameters to method simulate to summarize MTD.
- 'report_label' can be added to stopping rules for individual or combined stopping rule reporting.
- Reference JSS publication.
-
By default only use 5 cores and not all available cores on a machine. Note that this value can also be changed by the user.
-
Change of maintainer
-
PLcohortSize now defaults to 0 placebo patients upon Design class initialization (instead of 1 before - but note that this did not have effect on erroneous simulations, due to option being set in Data class)
-
The "examine" function also stops when the stopping rules are fulfilled already in case of no DLTs occurring. This was not the case beforehand and could lead to infinite looping (thanks to John Kirkpatrick for reporting the bug)
-
Removed RW2 warnings in "DualEndpointRW" - it seems to work nicely now (thanks to Charles Warne for reporting!)
-
Removed WinBUGS since it was not used anyway (and paper does not describe it)
-
The "examine" function now counts the number of times the same dose is recommended contiguously and break after e.g. the default 100 times (can be specified in a new option of "examine") to further avoid infinite loops and issues a corresponding warning if this condition is met
-
New "Increments" class "IncrementsNumDoseLevels" that works directly on the number of dose levels in the dose grid that can be incremented to from the current to the next cohort (thanks to John Kirkpatrick for the suggestion). This can for example be used in order to force the design not to skip any dose level when escalating.
-
Included the JSS manuscript as a new vignette.
-
It is now possible to specify how many cores should be used when parallel computations are used.
LogisticNormal
now works again -prec
was not found before.
-
Replaced
BayesLogit
dependency by JAGS code, sinceBayesLogit
was taken off CRAN. -
Speed up one example to pass CRAN check.
- matching of doses with the dose grid now includes a tolerance of 1e-10, in order to make it more user-friendly (thanks to YJ Choi and Giuseppe for investigating)
-
documentation:
- minor fix for alpha1 description in LogisticLogNormal-class
-
minor fix on scale_colour_manual import from ggplot2 reported by R-Core
- In case of multiple nextBest plots these are now also returned as original plots in the list singlePlots, to allow for further customization, before jointly plotting them.
- ProbitLogNormal: Now also this model allows for a reference dose and a log transformation of the (standardized) dose. This can be specified with options refDose and useLogDose.
- DualEndpoint: Same additional options as for ProbitLogNormal are now available for the DualEndpoint models. As a consequence, the parameter "refDose" for class DualEndpointBeta needed to be renamed to "refDoseBeta", and the parameter "refDose" for class DualEndpointEmax renamed to "refDoseEmax".
- documentation: in the DualEndpoint description fixed the \left problem in the formula
- New increment class "IncrementMin" has been added which allows to combine multiple increment rules with the MIN operation
-
Option targetThresh for NextBestDualEndpoint allows to tune from which target probability onwards it will be used to derive the next best dose (before this was fixed to 0.05)
-
Added ProbitLogNormal model
-
In the NextBestDualEndpoint class, the additional option "scale" now allows to also specify absolute biomarker target ranges. In the corresponding method evaluation, the safety samples are now no longer included in the evaluation of the biomarker target probability, such that now the description is consistent with the computations.
-
NextBestNCRM and NextBestDualEndpoint now return the matrix of target and overdosing probabilities as additional list element "probs" in the result of "nextBest" applied.
-
Note that in the StoppingTargetBiomarker evaluation, the toxicity is no longer a part of the biomarker target probability.
-
Added back the example vignette, so that it can be opened with crmPackExample()
-
Clarified that for the DualEndpointRW model samples from the prior cannot be obtained due to impropriety of the RW prior (added to model class description).
-
For DualEndpointRW models, it is now possible to have non-equidistant grid points, and obtain sensible results. (But still needs to be thoroughly tested though.)
-
For DualEndpointBeta model, it is now possible to have negative E0 and Emax parameters.
-
Cohort size of 0 for placebo is now possible - e.g. to only start with patients and then later move to larger cohorts also including placebo subjects.
-
When simulating with firstSeparate=TRUE and placebo, now the first (sentinel) cohort includes one active and one placebo patients, and the next patients use the cohort size for the active and placebo arms, respectively.
-
Barplots work now also when there was only one observed value in all simulations
-
NextBestDualEndpoint now only takes into account active doses when optimizing the biomarker outcome for the next best dose among admissible doses, thus avoiding early stopping at the placebo dose level.
-
If DataMixture objects are used, mcmc now correctly sets fromPrior to FALSE if the shared data object contains any data.
-
Added arguments probmin and probmax to MinimalInformative in order to control the probability threshold at the minimum and maximum dose for the minimally informative prior
-
Values of 95% CI and the corresponding ratio of the upper to the lower limit of this CI are displayed in results when using 'nextBest'
-
The six- number summary tables including the values of the lowest, 25th percentile, 50th percentile or the median, the mean, the 75th precentile and the highest of the final (at stopping) estimates of the
- dose levels corresponds to the target probability of DLE used at the end of a trial, TDEOT
- ratios of the upper to the lower 95% credibility intervals (CI) of TDEOT
- dose levels corresponds to the target probability of DLE used during a trial
- dose levels corresponds to the maximum gain value, Gstar
- ratios of the upper to the lower 95% CI of the final estimates of Gstar
- optimal doses, either the TDEOT (for DLE response only) or the minimum of TDEOT and Gstar (for DLE and efficacy response)
- ratios of the optimal dose
across all simulations will also be displayed when using 'summary' for simulations.
-
The value of the 95% CI of the final estimates will be displayed in results when using 'stopTrial'
-
Bugfixes for dual endpoint designs:
- Improved graphical display in plots for nextBest dose
- Improved methodology to compute Gstar
- Warnings are removed when using nextBest in simulations
- Stopping rules can now also be freely combined using the and/or operators
with the dual endpoint design stopping rules not using MCMC samples.
-
New model class "LogisticLogNormalMixture" has been added, for use with the new data class "DataMixture".
-
New stopping rule "StoppingHighestDose" has been added.
-
The "examine" method no longer stops when two consecutive cohorts start with the same dose. This is important e.g. for the two-parts study designs, where part 1 can end with the same dose as part 2 starts.
-
The contents of the "datanames" slot of new models are no longer restricted to a specific set, which was previously enforced by the validation function of the GeneralModel and AllModels classes.
-
Sampling from the prior can now be enabled/disabled by the user for the mcmc function, which is necessary for models where it might not be from the prior even though nObs == 0.
-
Bugfix: The results from the MinimalInformative function were not reproducible beforehand. Now a seed parameter can be supplied, which ensures reproducibility.
-
Bugfix: Compatibility of help file links with new ggplot2 package version.
- Bugfix: In newer versions of grid the plotting of simulation objects did no longer work. This was fixed.
- Bugfix: The MinimalInformative function previously produced too uninformative prior quantiles, which were not fulfilling the requirements in the function's documentation. With this bugfix, the correct (as per the Neuenschwander et al (2008) publication) prior quantiles are specified and then approximated with logistic (log) normal priors.
- Bugfix: Previously, it could happen with NextBestNCRM rule, that higher doses lead to decreasing probability of overdosing, only because for some doses there was numerically probability 1 of having a DLT. With this bugfix, it was clarified in the rules documentation and fixed in the rule method, that the right limit of the overdose interval vector will be inclusive.
-
Added examine function to generate a table of hypothetical trial courses for model-based and rule-based DLT-endpoint designs
-
Made results from mcmc() (works with the usual set.seed in earlier user code) and simulate() (as previously already promised) reproducible. See help file for mcmc for more details. Additional improvements to reduce confusing warning messages / notes from mcmc() and higher-level functions.
-
Made simulate with parallel=TRUE work on r.roche.com (Linux server), using the same parallelization method as for laptops (Windows)
-
Passing an empty (zero length) vector as the doselimit parameter of the nextBest function is now considered as requesting a dose recommendation without a strict dose limit, and a corresponding warning is printed.
-
Introduced GeneralModel class, from which then the class Model for single agent dose escalation derives. Another branch will be the ComboLogistic model for multiple agent combinations (in a future version). Similarly introduced GeneralData class, from which the class Data for single agent derives, separately from that will be the subclass DataCombo (in a future version).
-
Fixed bug in mcmc function which led to error "all data elements must have as many rows as the sample size was" and slightly changed JAGS way of handling burnin / thinning (which should not have a user impact).
-
Reduced number of MCMC samples for dual-endpoint example in vignette to be able to plot the vignette
-
simulate function has been fixed (specification of arguments)
-
Dual-endpoint model-based design has been added.
-
3+3 design simulation is now possible, see ?ThreePlusThreeDesign
-
Welcome message on attaching crmPack, i.e. when library("crmPack") is run
-
crmPackUpgrade() function for easy upgrade of crmPack to the latest version
-
Rule-based designs now can be specified with the class RuleDesign, while the model-based designs stay with the class Design. An even more special class is the DualDesign class, for dual-endpoint model-based designs. Corresponding classes GeneralSimulations, Simulations and DualSimulations capture the output of the trial simulations for rule-based, model-based and dual-endpoint designs.
-
The class Simulations-summary has been renamed to SimulationsSummary, similarly for the classes GeneralSimulationsSummary and DualSimulationsSummary.
-
All Stopping and CohortSize rules that are based on intervals (IncrementsRelative, IncrementsRelativeDLT, CohortSizeRange, CohortSizeDLT) now use a different intervals definition. Now the "intervals" slots only contain the left bounds of the intervals. Before, the last element needed to be infinity. See the vignette for examples.
-
StoppingMaxPatients class has been removed, as it was redundant with the class StoppingMinPatients. Please just use the StoppingMinPatients class instead.
-
Initialization methods have been replaced by dedicated initialization functions. Please now use these Class(...) functions instead of new("Class", ...) calls to obtain the correct objects. This change is also reflected in the vignette.
-
The extract function for extracting parameter samples from Samples objects has been removed (due to a name conflict with ggmcmc dependency packages). Please now use instead the "get" method for Samples objects (see the vignette for an example) to obtain data in the ggmcmc format.
-
crmPack now needs the package httr (it's now in the "Imports" field). Packages Rcpp and RcppArmadillo have been moved from "Depends" to "Suggests" packages. Currently we are not using them at all.
-
showLegend argument for model fit plotting functions, in order to show the legend or not.
no NEWS until this version