Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CodeCamp #1503] Add InstanceSegMetric to MMEval #70

Open
wants to merge 24 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion mmeval/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from .end_point_error import EndPointError
from .f_metric import F1Metric
from .hmean_iou import HmeanIoU
from .instance_seg import InstanceSeg
from .mae import MAE
from .mean_iou import MeanIoU
from .mse import MSE
Expand All @@ -25,5 +26,5 @@
'F1Metric', 'HmeanIoU', 'SingleLabelMetric', 'COCODetectionMetric',
'PCKAccuracy', 'MpiiPCKAccuracy', 'JhmdbPCKAccuracy', 'ProposalRecall',
'PSNR', 'MAE', 'MSE', 'SSIM', 'SNR', 'MultiLabelMetric',
'AveragePrecision', 'AVAMeanAP', 'BLEU'
'AveragePrecision', 'AVAMeanAP', 'BLEU', 'InstanceSeg'
]
2 changes: 2 additions & 0 deletions mmeval/metrics/_vendor/scannet/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
The code under this folder is from the official [ScanNet repo](https://github.com/ScanNet/ScanNet).
Some unused codes are removed to minimize the length of codes added.
4 changes: 4 additions & 0 deletions mmeval/metrics/_vendor/scannet/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .evaluate_semantic_instance import scannet_eval

__all__ = ['scannet_eval']
346 changes: 346 additions & 0 deletions mmeval/metrics/_vendor/scannet/evaluate_semantic_instance.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,346 @@
# Copyright (c) OpenMMLab. All rights reserved.
# adapted from https://github.com/ScanNet/ScanNet/blob/master/BenchmarkScripts/3d_evaluation/evaluate_semantic_instance.py # noqa
import numpy as np
from copy import deepcopy

from . import util_3d


def evaluate_matches(matches, class_labels, options):
"""Evaluate instance segmentation from matched gt and predicted instances
for all scenes.

Args:
matches (dict): Contains gt2pred and pred2gt infos for every scene.
class_labels (tuple[str]): Class names.
options (dict): ScanNet evaluator options. See get_options.

Returns:
np.array: Average precision scores for all thresholds and categories.
"""
overlaps = options['overlaps']
min_region_sizes = [options['min_region_sizes'][0]]
dist_threshes = [options['distance_threshes'][0]]
dist_confs = [options['distance_confs'][0]]

# results: class x overlap
ap = np.zeros((len(dist_threshes), len(class_labels), len(overlaps)),
float)
for di, (min_region_size, distance_thresh, distance_conf) in enumerate(
zip(min_region_sizes, dist_threshes, dist_confs)):
for oi, overlap_th in enumerate(overlaps):
pred_visited = {}
for m in matches:
for label_name in class_labels:
for p in matches[m]['pred'][label_name]:
if 'filename' in p:
pred_visited[p['filename']] = False
for li, label_name in enumerate(class_labels):
y_true = np.empty(0)
y_score = np.empty(0)
hard_false_negatives = 0
has_gt = False
has_pred = False
for m in matches:
pred_instances = matches[m]['pred'][label_name]
gt_instances = matches[m]['gt'][label_name]
# filter groups in ground truth
gt_instances = [
gt for gt in gt_instances
if gt['instance_id'] >= 1000 and gt['vert_count'] >=
min_region_size and gt['med_dist'] <= distance_thresh
and gt['dist_conf'] >= distance_conf
]
if gt_instances:
has_gt = True
if pred_instances:
has_pred = True

cur_true = np.ones(len(gt_instances))
cur_score = np.ones(len(gt_instances)) * (-float('inf'))
cur_match = np.zeros(len(gt_instances), dtype=bool)
# collect matches
for (gti, gt) in enumerate(gt_instances):
found_match = False
for pred in gt['matched_pred']:
# greedy assignments
if pred_visited[pred['filename']]:
continue
overlap = float(pred['intersection']) / (
gt['vert_count'] + pred['vert_count'] -
pred['intersection'])
if overlap > overlap_th:
confidence = pred['confidence']
# if already have a prediction for this gt,
# the prediction with the lower score is automatically a false positive # noqa
if cur_match[gti]:
max_score = max(cur_score[gti], confidence)
min_score = min(cur_score[gti], confidence)
cur_score[gti] = max_score
# append false positive
cur_true = np.append(cur_true, 0)
cur_score = np.append(cur_score, min_score)
cur_match = np.append(cur_match, True)
# otherwise set score
else:
found_match = True
cur_match[gti] = True
cur_score[gti] = confidence
pred_visited[pred['filename']] = True
if not found_match:
hard_false_negatives += 1
# remove non-matched ground truth instances
cur_true = cur_true[cur_match]
cur_score = cur_score[cur_match]

# collect non-matched predictions as false positive
for pred in pred_instances:
found_gt = False
for gt in pred['matched_gt']:
overlap = float(gt['intersection']) / (
gt['vert_count'] + pred['vert_count'] -
gt['intersection'])
if overlap > overlap_th:
found_gt = True
break
if not found_gt:
num_ignore = pred['void_intersection']
for gt in pred['matched_gt']:
# group?
if gt['instance_id'] < 1000:
num_ignore += gt['intersection']
# small ground truth instances
if gt['vert_count'] < min_region_size or gt[
'med_dist'] > distance_thresh or gt[
'dist_conf'] < distance_conf:
num_ignore += gt['intersection']
proportion_ignore = float(
num_ignore) / pred['vert_count']
# if not ignored append false positive
if proportion_ignore <= overlap_th:
cur_true = np.append(cur_true, 0)
confidence = pred['confidence']
cur_score = np.append(cur_score, confidence)

# append to overall results
y_true = np.append(y_true, cur_true)
y_score = np.append(y_score, cur_score)

# compute average precision
if has_gt and has_pred:
# compute precision recall curve first

# sorting and cumsum
score_arg_sort = np.argsort(y_score)
y_score_sorted = y_score[score_arg_sort]
y_true_sorted = y_true[score_arg_sort]
y_true_sorted_cumsum = np.cumsum(y_true_sorted)

# unique thresholds
(thresholds, unique_indices) = np.unique(
y_score_sorted, return_index=True)
num_prec_recall = len(unique_indices) + 1

# prepare precision recall
num_examples = len(y_score_sorted)
# follow https://github.com/ScanNet/ScanNet/pull/26 ? # noqa
num_true_examples = y_true_sorted_cumsum[-1] if len(
y_true_sorted_cumsum) > 0 else 0
precision = np.zeros(num_prec_recall)
recall = np.zeros(num_prec_recall)

# deal with the first point
y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0)
# deal with remaining
for idx_res, idx_scores in enumerate(unique_indices):
cumsum = y_true_sorted_cumsum[idx_scores - 1]
tp = num_true_examples - cumsum
fp = num_examples - idx_scores - tp
fn = cumsum + hard_false_negatives
p = float(tp) / (tp + fp)
r = float(tp) / (tp + fn)
precision[idx_res] = p
recall[idx_res] = r

# first point in curve is artificial
precision[-1] = 1.
recall[-1] = 0.

# compute average of precision-recall curve
recall_for_conv = np.copy(recall)
recall_for_conv = np.append(recall_for_conv[0],
recall_for_conv)
recall_for_conv = np.append(recall_for_conv, 0.)

stepWidths = np.convolve(recall_for_conv, [-0.5, 0, 0.5],
'valid')
# integrate is now simply a dot product
ap_current = np.dot(precision, stepWidths)

elif has_gt:
ap_current = 0.0
else:
ap_current = float('nan')
ap[di, li, oi] = ap_current
return ap


def compute_averages(aps, options, class_labels):
"""Averages AP scores for all categories.

Args:
aps (np.array): AP scores for all thresholds and categories.
options (dict): ScanNet evaluator options. See get_options.
class_labels (tuple[str]): Class names.

Returns:
dict: Overall and per-category AP scores.
"""
d_inf = 0
o50 = np.where(np.isclose(options['overlaps'], 0.5))
o25 = np.where(np.isclose(options['overlaps'], 0.25))
o_all_but25 = np.where(
np.logical_not(np.isclose(options['overlaps'], 0.25)))
avg_dict = {}
avg_dict['all_ap'] = np.nanmean(aps[d_inf, :, o_all_but25])
avg_dict['all_ap_50%'] = np.nanmean(aps[d_inf, :, o50])
avg_dict['all_ap_25%'] = np.nanmean(aps[d_inf, :, o25])
avg_dict['classes'] = {}
for (li, label_name) in enumerate(class_labels):
avg_dict['classes'][label_name] = {}
avg_dict['classes'][label_name]['ap'] = np.average(aps[d_inf, li,
o_all_but25])
avg_dict['classes'][label_name]['ap50%'] = np.average(aps[d_inf, li,
o50])
avg_dict['classes'][label_name]['ap25%'] = np.average(aps[d_inf, li,
o25])
return avg_dict


def assign_instances_for_scan(pred_info, gt_ids, options, valid_class_ids,
class_labels, id_to_label):
"""Assign gt and predicted instances for a single scene.

Args:
pred_info (dict): Predicted masks, labels and scores.
gt_ids (np.array): Ground truth instance masks.
options (dict): ScanNet evaluator options. See get_options.
valid_class_ids (tuple[int]): Ids of valid categories.
class_labels (tuple[str]): Class names.
id_to_label (dict[int, str]): Mapping of valid class id to class label.

Returns:
dict: Per class assigned gt to predicted instances.
dict: Per class assigned predicted to gt instances.
"""
# get gt instances
gt_instances = util_3d.get_instances(gt_ids, valid_class_ids, class_labels,
id_to_label)
# associate
gt2pred = deepcopy(gt_instances)
for label in gt2pred:
for gt in gt2pred[label]:
gt['matched_pred'] = []
pred2gt = {}
for label in class_labels:
pred2gt[label] = []
num_pred_instances = 0
# mask of void labels in the ground truth
bool_void = np.logical_not(np.in1d(gt_ids // 1000, valid_class_ids))
# go through all prediction masks
for pred_mask_file in pred_info:
label_id = int(pred_info[pred_mask_file]['label_id'])
conf = pred_info[pred_mask_file]['conf']
if not label_id in id_to_label: # noqa E713
continue
label_name = id_to_label[label_id]
# read the mask
pred_mask = pred_info[pred_mask_file]['mask']
if len(pred_mask) != len(gt_ids):
raise ValueError('len(pred_mask) != len(gt_ids)')
# convert to binary
pred_mask = np.not_equal(pred_mask, 0)
num = np.count_nonzero(pred_mask)
if num < options['min_region_sizes'][0]:
continue # skip if empty

pred_instance = {}
pred_instance['filename'] = pred_mask_file
pred_instance['pred_id'] = num_pred_instances
pred_instance['label_id'] = label_id
pred_instance['vert_count'] = num
pred_instance['confidence'] = conf
pred_instance['void_intersection'] = np.count_nonzero(
np.logical_and(bool_void, pred_mask))

# matched gt instances
matched_gt = []
# go through all gt instances with matching label
for (gt_num, gt_inst) in enumerate(gt2pred[label_name]):
intersection = np.count_nonzero(
np.logical_and(gt_ids == gt_inst['instance_id'], pred_mask))
if intersection > 0:
gt_copy = gt_inst.copy()
pred_copy = pred_instance.copy()
gt_copy['intersection'] = intersection
pred_copy['intersection'] = intersection
matched_gt.append(gt_copy)
gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy)
pred_instance['matched_gt'] = matched_gt
num_pred_instances += 1
pred2gt[label_name].append(pred_instance)

return gt2pred, pred2gt


def scannet_eval(preds, gts, options, valid_class_ids, class_labels,
id_to_label):
"""Evaluate instance segmentation in ScanNet protocol.

Args:
preds (list[dict]): Per scene predictions of mask, label and
confidence.
gts (list[np.array]): Per scene ground truth instance masks.
options (dict): ScanNet evaluator options. See get_options.
valid_class_ids (tuple[int]): Ids of valid categories.
class_labels (tuple[str]): Class names.
id_to_label (dict[int, str]): Mapping of valid class id to class label.

Returns:
dict: Overall and per-category AP scores.
"""
options = get_options(options)
matches = {}
for i, (pred, gt) in enumerate(zip(preds, gts)):
matches_key = i
# assign gt to predictions
gt2pred, pred2gt = assign_instances_for_scan(pred, gt, options,
valid_class_ids,
class_labels, id_to_label)
matches[matches_key] = {}
matches[matches_key]['gt'] = gt2pred
matches[matches_key]['pred'] = pred2gt

ap_scores = evaluate_matches(matches, class_labels, options)
avgs = compute_averages(ap_scores, options, class_labels)
return avgs


def get_options(options=None):
"""Set ScanNet evaluator options.

Args:
options (dict, optional): Not default options. Default: None.

Returns:
dict: Updated options with all 4 keys.
"""
assert options is None or isinstance(options, dict)
_options = dict(
overlaps=np.append(np.arange(0.5, 0.95, 0.05), 0.25),
min_region_sizes=np.array([100]),
distance_threshes=np.array([float('inf')]),
distance_confs=np.array([-float('inf')]))
if options is not None:
_options.update(options)
return _options
Loading