VideoQnA is a framework that retrieves video based on provided user prompt. It uses only the video embeddings to perform vector similarity search in Intel's VDMS vector database and performs all operations on Intel Xeon CPU. The pipeline supports long form videos and time-based search.
VideoQnA is implemented on top of GenAIComps, with the architecture flow chart shows below:
---
config:
flowchart:
nodeSpacing: 400
rankSpacing: 100
curve: linear
themeVariables:
fontSize: 50px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style VideoQnA-MegaService stroke:#000000
%% Subgraphs %%
subgraph VideoQnA-MegaService["VideoQnA-MegaService"]
direction LR
EM([Embedding MicroService]):::blue
RET([Retrieval MicroService]):::blue
RER([Rerank MicroService]):::blue
LVM([LVM MicroService]):::blue
end
subgraph User Interface
direction LR
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
Ingest([Ingest<br>]):::orchid
end
LOCAL_RER{{Reranking service<br>}}
CLIP_EM{{Embedding service <br>}}
VDB{{Vector DB<br><br>}}
V_RET{{Retriever service <br>}}
Ingest{{Ingest data <br>}}
DP([Data Preparation<br>]):::blue
LVM_gen{{LVM Service <br>}}
GW([VideoQnA GateWay<br>]):::orange
%% Data Preparation flow
%% Ingest data flow
direction LR
Ingest[Ingest data] --> UI
UI --> DP
DP <-.-> CLIP_EM
%% Questions interaction
direction LR
a[User Input Query] --> UI
UI --> GW
GW <==> VideoQnA-MegaService
EM ==> RET
RET ==> RER
RER ==> LVM
%% Embedding service flow
direction LR
EM <-.-> CLIP_EM
RET <-.-> V_RET
RER <-.-> LOCAL_RER
LVM <-.-> LVM_gen
direction TB
%% Vector DB interaction
V_RET <-.->VDB
DP <-.->VDB
- This project implements a Retrieval-Augmented Generation (RAG) workflow using LangChain, Intel VDMS VectorDB, and Text Generation Inference, optimized for Intel Xeon Scalable Processors.
- Video Processing: Videos are converted into feature vectors using mean aggregation and stored in the VDMS vector store.
- Query Handling: When a user submits a query, the system performs a similarity search in the vector store to retrieve the best-matching videos.
- Contextual Inference: The retrieved videos are then sent to the Large Vision Model (LVM) for inference, providing supplemental context for the query.
The VideoQnA service can be effortlessly deployed on Intel Xeon Scalable Processors.
By default, the embedding and LVM models are set to a default value as listed below:
Service | Model |
---|---|
Embedding | openai/clip-vit-base-patch32 |
LVM | DAMO-NLP-SG/Video-LLaMA |
For full instruction of deployment, please check Guide
Currently we support deploying VideoQnA services with docker compose, using the docker images built from source
. Find the corresponding compose.yaml.