-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Move oonidata API into oonifindings component
- Loading branch information
Showing
8 changed files
with
1,058 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
305 changes: 305 additions & 0 deletions
305
ooniapi/services/oonifindings/src/oonifindings/routers/data/aggregate_analysis.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
from datetime import date, datetime, timedelta, timezone | ||
from time import time | ||
from typing import List, Literal, Optional, Union, Dict | ||
from typing_extensions import Annotated | ||
from fastapi import APIRouter, Depends, Query | ||
from pydantic import BaseModel | ||
|
||
from .utils import get_measurement_start_day_agg, TimeGrains | ||
from ...dependencies import ( | ||
get_clickhouse_session, | ||
) | ||
from .list_analysis import ( | ||
SinceUntil, | ||
utc_30_days_ago, | ||
utc_today, | ||
) | ||
|
||
import logging | ||
|
||
from fastapi import APIRouter | ||
|
||
router = APIRouter() | ||
|
||
log = logging.getLogger(__name__) | ||
|
||
|
||
AggregationKeys = Literal[ | ||
"measurement_start_day", | ||
"domain", | ||
"probe_cc", | ||
"probe_asn", | ||
"test_name", | ||
] | ||
|
||
|
||
class DBStats(BaseModel): | ||
bytes: int | ||
elapsed_seconds: float | ||
row_count: int | ||
total_row_count: int | ||
|
||
|
||
class AggregationEntry(BaseModel): | ||
anomaly_count: float | ||
confirmed_count: float | ||
failure_count: float | ||
ok_count: float | ||
measurement_count: float | ||
|
||
measurement_start_day: date | ||
outcome_label: str | ||
outcome_value: float | ||
|
||
domain: Optional[str] = None | ||
probe_cc: Optional[str] = None | ||
probe_asn: Optional[int] = None | ||
|
||
|
||
class AggregationResponse(BaseModel): | ||
# TODO(arturo): these keys are inconsistent with the other APIs | ||
db_stats: DBStats | ||
dimension_count: int | ||
result: List[AggregationEntry] | ||
|
||
|
||
@router.get("/v1/aggregation/analysis", tags=["aggregation", "analysis"]) | ||
async def get_aggregation_analysis( | ||
axis_x: Annotated[AggregationKeys, Query()] = "measurement_start_day", | ||
axis_y: Annotated[Optional[AggregationKeys], Query()] = None, | ||
category_code: Annotated[Optional[str], Query()] = None, | ||
test_name: Annotated[Optional[str], Query()] = None, | ||
domain: Annotated[Optional[str], Query()] = None, | ||
input: Annotated[Optional[str], Query()] = None, | ||
probe_asn: Annotated[Union[int, str, None], Query()] = None, | ||
probe_cc: Annotated[Optional[str], Query(min_length=2, max_length=2)] = None, | ||
ooni_run_link_id: Annotated[Optional[str], Query()] = None, | ||
since: SinceUntil = utc_30_days_ago(), | ||
until: SinceUntil = utc_today(), | ||
time_grain: Annotated[TimeGrains, Query()] = "day", | ||
anomaly_sensitivity: Annotated[float, Query()] = 0.9, | ||
format: Annotated[Literal["JSON", "CSV"], Query()] = "JSON", | ||
download: Annotated[bool, Query()] = False, | ||
db=Depends(get_clickhouse_session), | ||
) -> AggregationResponse: | ||
q_args = {} | ||
and_clauses = [] | ||
extra_cols = {} | ||
dimension_count = 1 | ||
if axis_x == "measurement_start_day": | ||
# TODO(arturo): wouldn't it be nicer if we dropped the time_grain | ||
# argument and instead used axis_x IN (measurement_start_day, | ||
# measurement_start_hour, ..)? | ||
extra_cols["measurement_start_day"] = ( | ||
f"{get_measurement_start_day_agg(time_grain)} as measurement_start_day" | ||
) | ||
elif axis_x: | ||
extra_cols[axis_x] = axis_x | ||
|
||
if probe_asn is not None: | ||
if isinstance(probe_asn, str) and probe_asn.startswith("AS"): | ||
probe_asn = int(probe_asn[2:]) | ||
q_args["probe_asn"] = probe_asn | ||
and_clauses.append("probe_asn = %(probe_asn)d") | ||
extra_cols["probe_asn"] = "probe_asn" | ||
if probe_cc is not None: | ||
q_args["probe_cc"] = probe_cc | ||
and_clauses.append("probe_cc = %(probe_cc)s") | ||
extra_cols["probe_cc"] = "probe_cc" | ||
if test_name is not None: | ||
q_args["test_name"] = test_name | ||
and_clauses.append("test_name = %(test_name)s") | ||
extra_cols["test_name"] = "test_name" | ||
# if category_code is not None: | ||
# q_args["category_code"] = category_code | ||
# and_clauses.append("%(category_code)s") | ||
# extra_cols["category_code"] = "category_code" | ||
if domain is not None: | ||
q_args["domain"] = domain | ||
and_clauses.append("domain = %(domain)s") | ||
extra_cols["domain"] = "domain" | ||
if input is not None: | ||
q_args["input"] = input | ||
and_clauses.append("input = %(input)s") | ||
extra_cols["input"] = "input" | ||
|
||
if axis_y: | ||
dimension_count += 1 | ||
if axis_y == "measurement_start_day": | ||
# TODO(arturo): wouldn't it be nicer if we dropped the time_grain | ||
# argument and instead used axis_x IN (measurement_start_day, | ||
# measurement_start_hour, ..)? | ||
extra_cols["measurement_start_day"] = ( | ||
f"{get_measurement_start_day_agg(time_grain)} as measurement_start_day" | ||
) | ||
else: | ||
extra_cols[axis_y] = axis_y | ||
|
||
if since is not None: | ||
q_args["since"] = since | ||
and_clauses.append("measurement_start_time >= %(since)s") | ||
if until is not None: | ||
and_clauses.append("measurement_start_time <= %(until)s") | ||
q_args["until"] = until | ||
|
||
where = "" | ||
if len(and_clauses) > 0: | ||
where += " WHERE " | ||
where += " AND ".join(and_clauses) | ||
|
||
q = f""" | ||
WITH | ||
mapFilter((k, v) -> v != 0, dns_nok_outcomes) as dns_outcomes, | ||
mapFilter((k, v) -> v != 0, tcp_nok_outcomes) as tcp_outcomes, | ||
mapFilter((k, v) -> v != 0, tls_nok_outcomes) as tls_outcomes, | ||
arrayZip(mapKeys(dns_outcomes), mapValues(dns_outcomes)) as dns_outcome_list, | ||
arraySum((v) -> v.2, dns_outcome_list) as dns_nok_sum, | ||
arraySort((v) -> -v.2, arrayMap((v) -> (v.1, v.2/dns_nok_sum), dns_outcome_list)) as dns_outcomes_norm, | ||
arrayZip(mapKeys(tcp_outcomes), mapValues(tcp_outcomes)) as tcp_outcome_list, | ||
arraySum((v) -> v.2, tcp_outcome_list) as tcp_nok_sum, | ||
arraySort((v) -> -v.2, arrayMap((v) -> (v.1, v.2/tcp_nok_sum), tcp_outcome_list)) as tcp_outcomes_norm, | ||
arrayZip(mapKeys(tls_outcomes), mapValues(tls_outcomes)) as tls_outcome_list, | ||
arraySum((v) -> v.2, tls_outcome_list) as tls_nok_sum, | ||
arraySort((v) -> -v.2, arrayMap((v) -> (v.1, v.2/tls_nok_sum), tls_outcome_list)) as tls_outcomes_norm, | ||
arraySort( | ||
(v) -> -v.2, | ||
[ | ||
(dns_outcome_nok_label, dns_outcome_nok_value), | ||
(tcp_outcome_nok_label, tcp_outcome_nok_value), | ||
(tls_outcome_nok_label, tls_outcome_nok_value), | ||
IF( | ||
tls_ok_sum = 0 AND tls_outcome_nok_value = 0, | ||
-- Special case for when the tested target was not supporting HTTPS and hence the TLS outcome is not so relevant | ||
('ok', arrayMin([dns_outcome_ok_value, tcp_outcome_ok_value])), | ||
('ok', arrayMin([dns_outcome_ok_value, tcp_outcome_ok_value, tls_outcome_ok_value])) | ||
) | ||
] | ||
) as all_outcomes_sorted, | ||
arrayConcat(dns_outcomes_norm, tcp_outcomes_norm, tls_outcomes_norm) as all_nok_outcomes, | ||
dns_outcomes_norm[1].1 as dns_outcome_nok_label, | ||
dns_outcomes_norm[1].2 as dns_outcome_nok_value, | ||
tcp_outcomes_norm[1].1 as tcp_outcome_nok_label, | ||
tcp_outcomes_norm[1].2 as tcp_outcome_nok_value, | ||
tls_outcomes_norm[1].1 as tls_outcome_nok_label, | ||
tls_outcomes_norm[1].2 as tls_outcome_nok_value, | ||
IF(dns_ok_sum > 0, 1 - dns_outcome_nok_value, 0) as dns_outcome_ok_value, | ||
IF(tcp_ok_sum > 0, 1 - tcp_outcome_nok_value, 0) as tcp_outcome_ok_value, | ||
IF(tls_ok_sum > 0, 1 - tls_outcome_nok_value, 0) as tls_outcome_ok_value, | ||
all_outcomes_sorted[1].1 as final_outcome_label, | ||
IF(final_outcome_label = 'ok', all_outcomes_sorted[1].2, all_outcomes_sorted[1].2) as final_outcome_value | ||
SELECT | ||
{",".join(extra_cols.keys())}, | ||
probe_analysis, | ||
all_nok_outcomes as all_outcomes, | ||
final_outcome_label as outcome_label, | ||
final_outcome_value as outcome_value | ||
FROM ( | ||
WITH | ||
IF(resolver_asn = probe_asn, 1, 0) as is_isp_resolver, | ||
multiIf( | ||
top_dns_failure IN ('android_dns_cache_no_data', 'dns_nxdomain_error'), | ||
'nxdomain', | ||
coalesce(top_dns_failure, 'got_answer') | ||
) as dns_failure | ||
SELECT | ||
{",".join(extra_cols.values())}, | ||
anyHeavy(top_probe_analysis) as probe_analysis, | ||
sumMap( | ||
map( | ||
CONCAT(IF(is_isp_resolver, 'dns_isp.blocked.', 'dns_other.blocked.'), dns_failure), dns_blocked_max, | ||
CONCAT(IF(is_isp_resolver, 'dns_isp.down.', 'dns_other.down.'), dns_failure), dns_down_max | ||
) | ||
) as dns_nok_outcomes, | ||
sum(dns_ok_max) as dns_ok_sum, | ||
sumMap( | ||
map( | ||
CONCAT('tcp.blocked.', coalesce(top_tcp_failure, '')), tcp_blocked_max, | ||
CONCAT('tcp.down.', coalesce(top_tcp_failure, '')), tcp_down_max | ||
) | ||
) as tcp_nok_outcomes, | ||
sum(tcp_ok_max) as tcp_ok_sum, | ||
sumMap( | ||
map( | ||
CONCAT('tls.blocked.', coalesce(top_tls_failure, '')), tls_blocked_max, | ||
CONCAT('tls.down.', coalesce(top_tls_failure, '')), tls_down_max | ||
) | ||
) as tls_nok_outcomes, | ||
sum(tls_ok_max) as tls_ok_sum | ||
FROM ooni.analysis_web_measurement | ||
{where} | ||
GROUP BY {", ".join(extra_cols.keys())} | ||
ORDER BY {", ".join(extra_cols.keys())} | ||
) | ||
""" | ||
|
||
t = time.perf_counter() | ||
log.info(f"running query {q} with {q_args}") | ||
rows = db.execute(q, q_args) | ||
|
||
fixed_cols = ["probe_analysis", "all_outcomes", "outcome_label", "outcome_value"] | ||
|
||
results: List[AggregationEntry] = [] | ||
if rows and isinstance(rows, list): | ||
for row in rows: | ||
print(row) | ||
d = dict(zip(list(extra_cols.keys()) + fixed_cols, row)) | ||
outcome_value = d["outcome_value"] | ||
outcome_label = d["outcome_label"] | ||
anomaly_count = 0 | ||
confirmed_count = 0 | ||
failure_count = 0 | ||
ok_count = 0 | ||
if outcome_label == "ok": | ||
ok_count = outcome_value | ||
elif "blocked." in outcome_label: | ||
if outcome_value >= anomaly_sensitivity: | ||
confirmed_count = outcome_value | ||
else: | ||
anomaly_count = outcome_value | ||
|
||
# Map "down" to failures | ||
else: | ||
failure_count = outcome_value | ||
|
||
entry = AggregationEntry( | ||
anomaly_count=anomaly_count, | ||
confirmed_count=confirmed_count, | ||
failure_count=failure_count, | ||
ok_count=ok_count, | ||
measurement_count=1.0, | ||
measurement_start_day=d["measurement_start_day"], | ||
outcome_label=outcome_label, | ||
outcome_value=outcome_value, | ||
domain=d.get("domain"), | ||
probe_cc=d.get("probe_cc"), | ||
probe_asn=d.get("probe_asn"), | ||
) | ||
results.append(entry) | ||
return AggregationResponse( | ||
db_stats=DBStats( | ||
bytes=-1, | ||
elapsed_seconds=time.perf_counter() - t, | ||
row_count=len(results), | ||
total_row_count=len(results), | ||
), | ||
dimension_count=dimension_count, | ||
result=results, | ||
) |
Oops, something went wrong.