forked from awslabs/aws-cv-task2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
64 lines (49 loc) · 2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from collections import defaultdict
import torch
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = defaultdict(int)
self.avg = defaultdict(float)
self.sum = defaultdict(int)
self.count = defaultdict(int)
def update(self, n=1, **val):
for k in val:
self.val[k] = val[k]
self.sum[k] += val[k] * n
self.count[k] += n
self.avg[k] = self.sum[k] / self.count[k]
def set_batchnorm_mode(model, train=True):
"""Allows to set batch_norm layer mode to train or eval, independendtly on the mode of the model."""
def _set_batchnorm_mode(module):
if isinstance(module, torch.nn.BatchNorm1d) or isinstance(module, torch.nn.BatchNorm2d):
if train:
module.train()
else:
module.eval()
model.apply(_set_batchnorm_mode)
def get_error(output, target):
pred = output.argmax(dim=1)
correct = pred.eq(target).float().sum()
return float((1. - correct / output.size(0)) * 100.)
def adjust_learning_rate(optimizer, epoch, optimizer_cfg):
lr = optimizer_cfg.lr * (0.1 ** np.less(optimizer_cfg.schedule, epoch).sum())
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def get_device(model: torch.nn.Module):
return next(model.parameters()).device