-
Notifications
You must be signed in to change notification settings - Fork 6
/
gradio_ui.py
356 lines (315 loc) · 15.6 KB
/
gradio_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import PIL
import torch
import subprocess
import gradio as gr
from typing import Optional
from accelerate import Accelerator
from diffusers import (
AutoencoderKL,
StableDiffusionXLControlNetPipeline,
ControlNetModel,
UNet2DConditionModel,
)
from transformers import (
BlipProcessor, BlipForConditionalGeneration,
VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from clip_interrogator import Interrogator, Config, list_clip_models
def apply_color(image: PIL.Image.Image, color_map: PIL.Image.Image) -> PIL.Image.Image:
# Convert input images to LAB color space
image_lab = image.convert('LAB')
color_map_lab = color_map.convert('LAB')
# Split LAB channels
l, a , b = image_lab.split()
_, a_map, b_map = color_map_lab.split()
# Merge LAB channels with color map
merged_lab = PIL.Image.merge('LAB', (l, a_map, b_map))
# Convert merged LAB image back to RGB color space
result_rgb = merged_lab.convert('RGB')
return result_rgb
def remove_unlikely_words(prompt: str) -> str:
"""
Removes unlikely words from a prompt.
Args:
prompt: The text prompt to be cleaned.
Returns:
The cleaned prompt with unlikely words removed.
"""
unlikely_words = []
a1_list = [f'{i}s' for i in range(1900, 2000)]
a2_list = [f'{i}' for i in range(1900, 2000)]
a3_list = [f'year {i}' for i in range(1900, 2000)]
a4_list = [f'circa {i}' for i in range(1900, 2000)]
b1_list = [f"{year[0]} {year[1]} {year[2]} {year[3]} s" for year in a1_list]
b2_list = [f"{year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
b3_list = [f"year {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
b4_list = [f"circa {year[0]} {year[1]} {year[2]} {year[3]}" for year in a1_list]
words_list = [
"black and white,", "black and white", "black & white,", "black & white", "circa",
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
"blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
"black - and - white photograph,", "black - and - white photograph", "black on white,",
"black on white", "black-and-white", "historical image,", "historical picture,",
"historical photo,", "historical photograph,", "archival photo,", "taken in the early",
"taken in the late", "taken in the", "historic photograph,", "restored,", "restored",
"historical photo", "historical setting,",
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
"taken in", "shot on leica", "shot on leica sl2", "sl2",
"taken with a leica camera", "taken with a leica camera", "leica sl2", "leica", "setting",
"overcast day", "overcast weather", "slight overcast", "overcast",
"picture taken in", "photo taken in",
", photo", ", photo", ", photo", ", photo", ", photograph",
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
]
unlikely_words.extend(a1_list)
unlikely_words.extend(a2_list)
unlikely_words.extend(a3_list)
unlikely_words.extend(a4_list)
unlikely_words.extend(b1_list)
unlikely_words.extend(b2_list)
unlikely_words.extend(b3_list)
unlikely_words.extend(b4_list)
unlikely_words.extend(words_list)
for word in unlikely_words:
prompt = prompt.replace(word, "")
return prompt
def blip_image_captioning(image: PIL.Image.Image,
model_backbone: str,
weight_dtype: type,
device: str,
conditional: bool) -> str:
# https://huggingface.co/Salesforce/blip-image-captioning-large
# https://huggingface.co/Salesforce/blip-image-captioning-base
if weight_dtype == torch.bfloat16: # in case model might not accept bfloat16 data type
weight_dtype = torch.float16
processor = BlipProcessor.from_pretrained(f"Salesforce/{model_backbone}")
model = BlipForConditionalGeneration.from_pretrained(
f"Salesforce/{model_backbone}", torch_dtype=weight_dtype).to(device)
valid_backbones = ["blip-image-captioning-large", "blip-image-captioning-base"]
if model_backbone not in valid_backbones:
raise ValueError(f"Invalid model backbone '{model_backbone}'. \
Valid options are: {', '.join(valid_backbones)}")
if conditional:
text = "a photography of"
inputs = processor(image, text, return_tensors="pt").to(device, weight_dtype)
else:
inputs = processor(image, return_tensors="pt").to(device)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
# def vit_gpt2_image_captioning(image: PIL.Image.Image, device: str) -> str:
# # https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
# model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning").to(device)
# feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# max_length = 16
# num_beams = 4
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
# pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
# pixel_values = pixel_values.to(device)
# output_ids = model.generate(pixel_values, **gen_kwargs)
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# caption = [pred.strip() for pred in preds]
# return caption[0]
# def clip_image_captioning(image: PIL.Image.Image,
# clip_model_name: str,
# device: str) -> str:
# # validate clip model name
# models = list_clip_models()
# if clip_model_name not in models:
# raise ValueError(f"Could not find CLIP model {clip_model_name}! \
# Available models: {models}")
# config = Config(device=device, clip_model_name=clip_model_name)
# config.apply_low_vram_defaults()
# ci = Interrogator(config)
# caption = ci.interrogate(image)
# return caption
# Define a function to process the image with the loaded model
def process_image(image_path: str,
controlnet_model_name_or_path: str,
caption_model_name: str,
positive_prompt: Optional[str],
negative_prompt: Optional[str],
seed: int,
num_inference_steps: int,
mixed_precision: str,
pretrained_model_name_or_path: str,
pretrained_vae_model_name_or_path: Optional[str],
revision: Optional[str],
variant: Optional[str],
repo: str,
ckpt: str,) -> PIL.Image.Image:
# Seed
generator = torch.manual_seed(seed)
# Accelerator Setting
accelerator = Accelerator(
mixed_precision=mixed_precision,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae_path = (
pretrained_model_name_or_path
if pretrained_vae_model_name_or_path is None
else pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if pretrained_vae_model_name_or_path is None else None,
revision=revision,
variant=variant,
)
unet = UNet2DConditionModel.from_config(
pretrained_model_name_or_path,
subfolder="unet",
revision=revision,
variant=variant,
)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
# Move vae, unet and text_encoder to device and cast to weight_dtype
# The VAE is in float32 to avoid NaN losses.
if pretrained_vae_model_name_or_path is not None:
vae.to(accelerator.device, dtype=weight_dtype)
else:
vae.to(accelerator.device, dtype=torch.float32)
unet.to(accelerator.device, dtype=weight_dtype)
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path, torch_dtype=weight_dtype)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
pretrained_model_name_or_path,
vae=vae,
unet=unet,
controlnet=controlnet,
)
pipe.to(accelerator.device, dtype=weight_dtype)
image = PIL.Image.open(image_path)
# Prepare everything with our `accelerator`.
pipe, image = accelerator.prepare(pipe, image)
pipe.safety_checker = None
# Convert image into grayscale
original_size = image.size
control_image = image.convert("L").convert("RGB").resize((512, 512))
# Image captioning
if caption_model_name == "blip-image-captioning-large" or "blip-image-captioning-base":
caption = blip_image_captioning(control_image, caption_model_name,
weight_dtype, accelerator.device, conditional=True)
# elif caption_model_name == "ViT-L-14/openai" or "ViT-H-14/laion2b_s32b_b79k":
# caption = clip_image_captioning(control_image, caption_model_name, accelerator.device)
# elif caption_model_name == "vit-gpt2-image-captioning":
# caption = vit_gpt2_image_captioning(control_image, accelerator.device)
caption = remove_unlikely_words(caption)
# Combine positive prompt and captioning result
prompt = [positive_prompt + ", " + caption]
# Image colorization
image = pipe(prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
image=control_image).images[0]
# Apply color mapping
result_image = apply_color(control_image, image)
result_image = result_image.resize(original_size)
return result_image, caption
# Define the image gallery based on folder path
def get_image_paths(folder_path):
import os
image_paths = []
for filename in os.listdir(folder_path):
if filename.endswith(".jpg") or filename.endswith(".png"):
image_paths.append([os.path.join(folder_path, filename)])
return image_paths
# Create the Gradio interface
def create_interface():
controlnet_model_dict = {
"sdxl-light-caption-30000": "sdxl_light_caption_output/checkpoint-30000/controlnet",
"sdxl-light-custom-caption-30000": "sdxl_light_custom_caption_output/checkpoint-30000/controlnet",
}
images = get_image_paths("example/legacy_images") # Replace with your folder path
interface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(label="Upload image",
value="example/legacy_images/Hollywood-Sign.jpg",
type='filepath'),
gr.Dropdown(choices=[controlnet_model_dict[key] for key in controlnet_model_dict],
value=controlnet_model_dict["sdxl-light-caption-30000"],
label="Select ControlNet Model"),
gr.Dropdown(choices=["blip-image-captioning-large",
"blip-image-captioning-base",],
value="blip-image-captioning-large",
label="Select Image Captioning Model"),
gr.Textbox(label="Positive Prompt", placeholder="Text for positive prompt"),
gr.Textbox(value="low quality, bad quality, low contrast, black and white, bw, monochrome, grainy, blurry, historical, restored, desaturate",
label="Negative Prompt", placeholder="Text for negative prompt"),
],
outputs=[
gr.Image(label="Colorized image",
value="example/UUColor_results/Hollywood-Sign.jpeg",
format="jpeg"),
gr.Textbox(label="Captioning Result", show_copy_button=True)
],
examples=images,
additional_inputs=[
# gr.Radio(choices=["Original", "Square"], value="Original",
# label="Output resolution"),
# gr.Slider(minimum=128, maximum=512, value=256, step=128,
# label="Height & Width",
# info='Only effect if select "Square" output resolution'),
gr.Slider(0, 1000, 123, label="Seed"),
gr.Radio(choices=[1, 2, 4, 8],
value=8,
label="Inference Steps",
info="1-step, 2-step, 4-step, or 8-step distilled models"),
gr.Radio(choices=["no", "fp16", "bf16"],
value="fp16",
label="Mixed Precision",
info="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16)."),
gr.Dropdown(choices=["stabilityai/stable-diffusion-xl-base-1.0"],
value="stabilityai/stable-diffusion-xl-base-1.0",
label="Base Model",
info="Path to pretrained model or model identifier from huggingface.co/models."),
gr.Dropdown(choices=["None"],
value=None,
label="VAE Model",
info="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038."),
gr.Dropdown(choices=["None"],
value=None,
label="Varient",
info="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16"),
gr.Dropdown(choices=["None"],
value=None,
label="Revision",
info="Revision of pretrained model identifier from huggingface.co/models."),
gr.Dropdown(choices=["ByteDance/SDXL-Lightning"],
value="ByteDance/SDXL-Lightning",
label="Repository",
info="Repository from huggingface.co"),
gr.Dropdown(choices=["sdxl_lightning_1step_unet.safetensors",
"sdxl_lightning_2step_unet.safetensors",
"sdxl_lightning_4step_unet.safetensors",
"sdxl_lightning_8step_unet.safetensors"],
value="sdxl_lightning_8step_unet.safetensors",
label="Checkpoint",
info="Available checkpoints from the repository. Caution! Checkpoint's 'N'step must match with inference steps"),
],
title="Text-Guided Image Colorization",
description="Upload an image and select a model to colorize it."
)
return interface
def main():
# Launch the Gradio interface
interface = create_interface()
interface.launch()
if __name__ == "__main__":
main()