Skip to content
/ heuron Public

Experimental Neural Network Implementation in Haskell 💖

Notifications You must be signed in to change notification settings

ndzik/heuron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

84 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Heuron

This is a prototype implementation for describing neural networks in Haskell. The basic idea is to have a backend agnostic DSL, which can have FPGAs, GPUs or CPUs as a target.

Heuron.V1

V1 is an experiment of how I can achieve my goal of correct by construction neural networks. For the meantime, V1 is a purely CPU based implementation using 100% Haskell code.

  • Heuron.V1.Single:
    • Initial API for describing a feed-forward neural net without backpropagation primitives on singular observations, i.e. batch size of 1. This will ultimately be removed together with all of V1, when V2 is realized.
  • Heuron.V1.Batched:
    • This contains a feed-forward neural net with training capabilities using backpropagation. The theory of how to realize and implement a neural net is not difficult, the complex part was how I could lift most of the construction into the type-level s.t. the compiler has all information available to prohibit the user from describing NNs that are:
      • unsupported
      • contain incompatible layers:
        • This includes forward & backward pass separately
  let ann =
        inputLayer ReLU StochasticGradientDescent
          :>: hiddenLayer ReLU StochasticGradientDescent
          :>: hiddenLayer ReLU StochasticGradientDescent
          :>: hiddenLayer ReLU StochasticGradientDescent
            =| outputLayer Softmax StochasticGradientDescent
  -- > :t ann
  ann :: Network
    b
    '[Layer b 6 3 ReLU StochasticGradientDescent,
      Layer b 3 3 ReLU StochasticGradientDescent,
      Layer b 3 3 ReLU StochasticGradientDescent,
      Layer b 3 3 ReLU StochasticGradientDescent,
      Layer b 3 2 Softmax StochasticGradientDescent]

In the example we describe an ANN with three hidden layers. The input layer expects 6 inputs and contains 3 neurons. b is the batchsize with which this network will be trained. Since by the time of construction the batchsize might be unknown it is left as an ambiguous type-parameter. What is important to note is, that one can always ask the compiler to show a description of ones neural network. Each layer can have its own activation function (ReLU, Softmax, or whatever might be implement by a library user on his own data-type) and optimizer (StochasticGradientDescent, etc.).

If the typeclasses are not implemented or the network description does not adhere to certain constraints which guarantee correct networks, the compiler will tell you something is wrong.

Heuron.V1 - MNIST handwritten digits example

Heuron-Net-Training

The executable defined by default uses the training set from the MNIST database for handwritten digits. Downloading the database and placing the training set in a data/ folder within the directory where heuron is started, will train a simple ANN on said dataset. This is a practical example of Heuron.V1 usage. The above picture draws the current network parameters during training.

The network defined is of the following type:

ann :: Network
  batchSize
  '[Layer 100 pixelCount        hiddenNeuronCount ReLU    StochasticGradientDescent,
    Layer 100 hiddenNeuronCount hiddenNeuronCount ReLU    StochasticGradientDescent,
    Layer 100 hiddenNeuronCount hiddenNeuronCount ReLU    StochasticGradientDescent,
    Layer 100 hiddenNeuronCount 10                Softmax StochasticGradientDescent]

An ANN with a batchSize of 100, an input layer expecting pixelCount inputs containing hiddenNeuronCount neurons, using ReLU as its activation function and StochasticGradientDescent as an optimizer. The ANN has two hidden layers expecting hiddenNeuronCount inputs and containing hiddenNeuronCount neurons using the ReLU activation function and StochasticGradientDescent as an optimizer. The output layer expects hiddenNeuronCount inputs and contains 10 neurons using the Softmax activation function to finally classify each digit, also using StochasticGradientDescent as its optimizer.

Heuron.V1 Layer description

Describing layers is rather easy. A few combinators are defined and more can be easily added. The above example uses the following code to describe the layers:

-- Describe network.
let learningRate = 0.25
inputLayer <- mkLayer $ do
  inputs @pixelCount
  neuronsWith @hiddenNeuronCount rng $ weightsScaledBy (1 / 784)
  activationF ReLU
  optimizerFunction (StochasticGradientDescent learningRate)

[hiddenLayer00, hiddenLayer01] <- mkLayers 2 $ do
  neuronsWith @hiddenNeuronCount rng $ weightsScaledBy (1 / 32)
  activationF ReLU
  optimizerFunction (StochasticGradientDescent learningRate)

outputLayer <- mkLayer $ do
  neurons @10 rng
  activationF Softmax
  optimizerFunction (StochasticGradientDescent learningRate)
  • inputs allows to explicitly define the amount of inputs a layer is expecting.
  • neuronsWith is required to set the number of neurons in this layer. neurons is a convenience function if there is no need to further modify the initial weightdistribution.
  • activationF allows to define the activation function.
  • optimizerFunction sets the optimizer function.

Note how the hidden layers do not define their respective inputs. When the layers are used to describe the ANN, GHC will automagically narrow the number of inputs down to the number of outputs from the previous layer. One can, of course, still explicitly define the number of expected inputs and if they do not match, GHC will tell you that somewith is wrong with your network description.

Heuron.V2

With my experience from implementing V1 I want to generalize the created interfaces and make them abstract enough to allow different net-generation backends. E.g. it should be possible to let this library generate a GPU optimized neural net for training and a CPU/FPGA targeted software net for execution. All with the same code.

FAQ

Q: Why do you do this if there are things like TensorFlow, PyTorch, etc.?

A: I like types, I like proofs, I like static analysis. I like to learn stuff and build things from the ground up. I do, because I am.

Q: Is this possible with Haskell?

A: We will see.

About

Experimental Neural Network Implementation in Haskell 💖

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published