The goal of this package is to provide R users access to modern methods for non-probability samples when auxiliary information from the population or probability sample is available:
- inverse probability weighting estimators with possible calibration constraints (Chen, Li, and Wu 2020),
- mass imputation estimators based in nearest neighbours (Yang, Kim, and Hwang 2021), predictive mean matching and regression imputation (Kim et al. 2021),
- doubly robust estimators with bias minimization Yang, Kim, and Song (2020).
The package allows for:
- variable section in high-dimensional space using SCAD (Yang, Kim, and
Song 2020), Lasso and MCP penalty (via the
ncvreg
,Rcpp
,RcppArmadillo
packages), - estimation of variance using analytical and bootstrap approach (see Wu (2023)),
- integration with the
survey
package when probability sample is available Lumley (2023), - different links for selection (
logit
,probit
andcloglog
) and outcome (gaussian
,binomial
andpoisson
) variables.
Details on use of the package be found:
- on the draft (and not proofread) version the book Modern inference methods for non-probability samples with R,
- example codes that reproduce papers are available at github in the repository software tutorials.
You can install the recent version of nonprobsvy
package from main
branch Github with:
remotes::install_github("ncn-foreigners/nonprobsvy")
or install the stable version from CRAN
install.packages("nonprobsvy")
or development version from the dev
branch
remotes::install_github("ncn-foreigners/nonprobsvy@dev")
Consider the following setting where two samples are available:
non-probability (denoted as
Sample | Auxiliary variables |
Target variable |
Design ( |
|
---|---|---|---|---|
|
1 | ? | ||
… | ? | |||
? | ||||
|
? | |||
… | ? | |||
? |
Suppose
- unit-level data is available for the non-probability sample
$S_{A}$ , i.e. $(y_{k}, \boldsymbol{x}{k})$ is available for all units $k \in S{A}$, and population-level data is available for $\boldsymbol{x}{1}, ..., \boldsymbol{x}{p}$, denoted as$\tau_{x_{1}}, \tau_{x_{2}}, ..., \tau_{x_{p}}$ and population size$N$ is known. We can also consider situations where population data are estimated (e.g. on the basis of a survey to which we do not have access), - unit-level data is available for the non-probability sample
$S_A$ and the probability sample$S_B$ , i.e.$(y_k, \boldsymbol{x}_k, R_k)$ is determined by the data. is determined by the data:$R_k=1$ if$k \in S_A$ otherwise$R_k=0$ ,$y_k$ is observed only for sample$S_A$ and$\boldsymbol{x}_k$ is observed in both in both$S_A$ and$S_B$ ,
Estimator | Example code |
---|---|
Mass imputation based on regression imputation |
nonprob(
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
pop_totals = c(`(Intercept)`= N,
x1 = tau_x1,
x2 = tau_x2,
...,
xk = tau_xk),
method_outcome = "glm",
family_outcome = "gaussian"
) |
Inverse probability weighting |
nonprob(
selection = ~ x1 + x2 + ... + xk,
target = ~ y,
data = nonprob,
pop_totals = c(`(Intercept)` = N,
x1 = tau_x1,
x2 = tau_x2,
...,
xk = tau_xk),
method_selection = "logit"
) |
Inverse probability weighting with calibration constraint |
nonprob(
selection = ~ x1 + x2 + ... + xk,
target = ~ y,
data = nonprob,
pop_totals = c(`(Intercept)`= N,
x1 = tau_x1,
x2 = tau_x2,
...,
xk = tau_xk),
method_selection = "logit",
control_selection = controlSel(est_method_sel = "gee", h = 1)
) |
Doubly robust estimator |
nonprob(
selection = ~ x1 + x2 + ... + xk,
outcome = y ~ x1 + x2 + …, + xk,
pop_totals = c(`(Intercept)` = N,
x1 = tau_x1,
x2 = tau_x2,
...,
xk = tau_xk),
svydesign = prob,
method_outcome = "glm",
family_outcome = "gaussian"
) |
Estimator | Example code |
---|---|
Mass imputation based on regression imputation |
nonprob(
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "glm",
family_outcome = "gaussian"
) |
Mass imputation based on nearest neighbour imputation |
nonprob(
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "nn",
family_outcome = "gaussian",
control_outcome = controlOutcome(k = 2)
) |
Mass imputation based on predictive mean matching |
nonprob(
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "pmm",
family_outcome = "gaussian"
) |
Mass imputation based on regression imputation with variable selection (LASSO) |
nonprob(
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "pmm",
family_outcome = "gaussian",
control_outcome = controlOut(penalty = "lasso"),
control_inference = controlInf(vars_selection = TRUE)
) |
Inverse probability weighting |
nonprob(
selection = ~ x1 + x2 + ... + xk,
target = ~ y,
data = nonprob,
svydesign = prob,
method_selection = "logit"
) |
Inverse probability weighting with calibration constraint |
nonprob(
selection = ~ x1 + x2 + ... + xk,
target = ~ y,
data = nonprob,
svydesign = prob,
method_selection = "logit",
control_selection = controlSel(est_method_sel = "gee", h = 1)
) |
Inverse probability weighting with calibration constraint with variable selection (SCAD) |
nonprob(
selection = ~ x1 + x2 + ... + xk,
target = ~ y,
data = nonprob,
svydesign = prob,
method_outcome = "pmm",
family_outcome = "gaussian",
control_inference = controlInf(vars_selection = TRUE)
) |
Doubly robust estimator |
nonprob(
selection = ~ x1 + x2 + ... + xk,
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "glm",
family_outcome = "gaussian"
) |
Doubly robust estimator with variable selection (SCAD) and bias minimization |
nonprob(
selection = ~ x1 + x2 + ... + xk,
outcome = y ~ x1 + x2 + ... + xk,
data = nonprob,
svydesign = prob,
method_outcome = "glm",
family_outcome = "gaussian",
control_inference = controlInf(
vars_selection = TRUE,
bias_correction = TRUE
)
) |
Simulate example data from the following paper: Kim, Jae Kwang, and Zhonglei Wang. “Sampling techniques for big data analysis.” International Statistical Review 87 (2019): S177-S191 [section 5.2]
library(survey)
library(nonprobsvy)
set.seed(1234567890)
N <- 1e6 ## 1000000
n <- 1000
x1 <- rnorm(n = N, mean = 1, sd = 1)
x2 <- rexp(n = N, rate = 1)
epsilon <- rnorm(n = N) # rnorm(N)
y1 <- 1 + x1 + x2 + epsilon
y2 <- 0.5*(x1 - 0.5)^2 + x2 + epsilon
p1 <- exp(x2)/(1+exp(x2))
p2 <- exp(-0.5+0.5*(x2-2)^2)/(1+exp(-0.5+0.5*(x2-2)^2))
flag_bd1 <- rbinom(n = N, size = 1, prob = p1)
flag_srs <- as.numeric(1:N %in% sample(1:N, size = n))
base_w_srs <- N/n
population <- data.frame(x1,x2,y1,y2,p1,p2,base_w_srs, flag_bd1, flag_srs)
base_w_bd <- N/sum(population$flag_bd1)
Declare svydesign
object with survey
package
sample_prob <- svydesign(ids= ~1, weights = ~ base_w_srs,
data = subset(population, flag_srs == 1))
Estimate population mean of y1
based on doubly robust estimator using
IPW with calibration constraints.
result_dr <- nonprob(
selection = ~ x2,
outcome = y1 ~ x1 + x2,
data = subset(population, flag_bd1 == 1),
svydesign = sample_prob
)
Results
summary(result_dr)
#>
#> Call:
#> nonprob(data = subset(population, flag_bd1 == 1), selection = ~x2,
#> outcome = y1 ~ x1 + x2, svydesign = sample_prob)
#>
#> -------------------------
#> Estimated population mean: 2.95 with overall std.err of: 0.04195
#> And std.err for nonprobability and probability samples being respectively:
#> 0.000783 and 0.04195
#>
#> 95% Confidence inverval for popualtion mean:
#> lower_bound upper_bound
#> y1 2.867789 3.03224
#>
#>
#> Based on: Doubly-Robust method
#> For a population of estimate size: 1025063
#> Obtained on a nonprobability sample of size: 693011
#> With an auxiliary probability sample of size: 1000
#> -------------------------
#>
#> Regression coefficients:
#> -----------------------
#> For glm regression on outcome variable:
#> Estimate Std. Error z value P(>|z|)
#> (Intercept) 0.996282 0.002139 465.8 <2e-16 ***
#> x1 1.001931 0.001200 835.3 <2e-16 ***
#> x2 0.999125 0.001098 910.2 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> -----------------------
#> For glm regression on selection variable:
#> Estimate Std. Error z value P(>|z|)
#> (Intercept) -0.498997 0.003702 -134.8 <2e-16 ***
#> x2 1.885629 0.005303 355.6 <2e-16 ***
#> -------------------------
#>
#> Weights:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.000 1.071 1.313 1.479 1.798 2.647
#> -------------------------
#>
#> Covariate balance:
#> (Intercept) x2
#> 25062.8473 -517.5862
#> -------------------------
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.99999 0.06603 0.23778 0.26046 0.44358 0.62222
#>
#> AIC: 1010622
#> BIC: 1010645
#> Log-Likelihood: -505309 on 694009 Degrees of freedom
Mass imputation estimator
result_mi <- nonprob(
outcome = y1 ~ x1 + x2,
data = subset(population, flag_bd1 == 1),
svydesign = sample_prob
)
Results
summary(result_mi)
#>
#> Call:
#> nonprob(data = subset(population, flag_bd1 == 1), outcome = y1 ~
#> x1 + x2, svydesign = sample_prob)
#>
#> -------------------------
#> Estimated population mean: 2.95 with overall std.err of: 0.04203
#> And std.err for nonprobability and probability samples being respectively:
#> 0.001227 and 0.04201
#>
#> 95% Confidence inverval for popualtion mean:
#> lower_bound upper_bound
#> y1 2.867433 3.032186
#>
#>
#> Based on: Mass Imputation method
#> For a population of estimate size: 1e+06
#> Obtained on a nonprobability sample of size: 693011
#> With an auxiliary probability sample of size: 1000
#> -------------------------
#>
#> Regression coefficients:
#> -----------------------
#> For glm regression on outcome variable:
#> Estimate Std. Error z value P(>|z|)
#> (Intercept) 0.996282 0.002139 465.8 <2e-16 ***
#> x1 1.001931 0.001200 835.3 <2e-16 ***
#> x2 0.999125 0.001098 910.2 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> -------------------------
Inverse probability weighting estimator
result_ipw <- nonprob(
selection = ~ x2,
target = ~y1,
data = subset(population, flag_bd1 == 1),
svydesign = sample_prob)
Results
summary(result_ipw)
#>
#> Call:
#> nonprob(data = subset(population, flag_bd1 == 1), selection = ~x2,
#> target = ~y1, svydesign = sample_prob)
#>
#> -------------------------
#> Estimated population mean: 2.925 with overall std.err of: 0.05
#> And std.err for nonprobability and probability samples being respectively:
#> 0.001586 and 0.04997
#>
#> 95% Confidence inverval for popualtion mean:
#> lower_bound upper_bound
#> y1 2.82679 3.022776
#>
#>
#> Based on: Inverse probability weighted method
#> For a population of estimate size: 1025063
#> Obtained on a nonprobability sample of size: 693011
#> With an auxiliary probability sample of size: 1000
#> -------------------------
#>
#> Regression coefficients:
#> -----------------------
#> For glm regression on selection variable:
#> Estimate Std. Error z value P(>|z|)
#> (Intercept) -0.498997 0.003702 -134.8 <2e-16 ***
#> x2 1.885629 0.005303 355.6 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> -------------------------
#>
#> Weights:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.000 1.071 1.313 1.479 1.798 2.647
#> -------------------------
#>
#> Covariate balance:
#> (Intercept) x2
#> 25062.8473 -517.5862
#> -------------------------
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -0.99999 0.06603 0.23778 0.26046 0.44358 0.62222
#>
#> AIC: 1010622
#> BIC: 1010645
#> Log-Likelihood: -505309 on 694009 Degrees of freedom
Work on this package is supported by the National Science Centre, OPUS 20 grant no. 2020/39/B/HS4/00941.
Chen, Yilin, Pengfei Li, and Changbao Wu. 2020. “Doubly Robust Inference With Nonprobability Survey Samples.” Journal of the American Statistical Association 115 (532): 2011–21. https://doi.org/10.1080/01621459.2019.1677241.
Kim, Jae Kwang, Seho Park, Yilin Chen, and Changbao Wu. 2021. “Combining Non-Probability and Probability Survey Samples Through Mass Imputation.” Journal of the Royal Statistical Society Series A: Statistics in Society 184 (3): 941–63. https://doi.org/10.1111/rssa.12696.
Lumley, Thomas. 2004. “Analysis of Complex Survey Samples.” Journal of Statistical Software 9 (1): 1–19.
———. 2023. “Survey: Analysis of Complex Survey Samples.”
Wu, Changbao. 2023. “Statistical Inference with Non-Probability Survey Samples.” Survey Methodology 48 (2): 283–311. https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm.
Yang, Shu, Jae Kwang Kim, and Youngdeok Hwang. 2021. “Integration of Data from Probability Surveys and Big Found Data for Finite Population Inference Using Mass Imputation.” Survey Methodology 47 (1): 29–58. https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm.
Yang, Shu, Jae Kwang Kim, and Rui Song. 2020. “Doubly Robust Inference When Combining Probability and Non-Probability Samples with High Dimensional Data.” Journal of the Royal Statistical Society Series B: Statistical Methodology 82 (2): 445–65. https://doi.org/10.1111/rssb.12354.