-
Notifications
You must be signed in to change notification settings - Fork 3
/
application.py
44 lines (31 loc) · 1.37 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from flask import Flask, render_template, request, redirect
from flask_cors import CORS, cross_origin
import pickle
import pandas as pd
import numpy as np
app = Flask(__name__)
cors = CORS(app)
model = pickle.load(open('LinearRegressionModel.pkl', 'rb'))
car = pd.read_csv('quikr car dataset.csv')
@app.route('/', methods=['GET', 'POST'])
def index():
companies = sorted(car['company'].unique())
car_models = sorted(car['name'].unique())
year = sorted(car['year'].unique(), reverse=True)
fuel_type = car['fuel_type'].unique()
companies.insert(0, 'Select Company')
return render_template('index.html', companies=companies, car_models=car_models, years=year, fuel_types=fuel_type)
@app.route('/predict', methods=['POST'])
@cross_origin()
def predict():
company = request.form.get('company')
car_model = request.form.get('car_models')
year = request.form.get('year')
fuel_type = request.form.get('fuel_type')
driven = request.form.get('kilo_driven')
prediction = model.predict(pd.DataFrame(columns=['name', 'company', 'year', 'kms_driven', 'fuel_type'],
data=np.array([car_model, company, year, driven, fuel_type]).reshape(1, 5)))
print(str(np.round(prediction[0], 2)))
return str(np.round(prediction[0], 2))
if __name__ == '__main__':
app.run()