forked from rykov8/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 85
/
sl_utils.py
680 lines (584 loc) · 30.9 KB
/
sl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
"""Some utils for SSD."""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import keras.backend as K
import h5py
import os
import sys
from ssd_utils import PriorMap
from utils.bboxes import rot_matrix
from utils.bboxes import polygon_to_rbox, rbox_to_polygon
from utils.bboxes import polygon_to_rbox2, rbox2_to_polygon
from utils.bboxes import polygon_to_rbox3, rbox3_to_polygon
eps = 1e-10
mean = lambda x: np.sum(x)/len(x)
def plot_rbox(box, color='r', linewidth=1):
xy_rec = rbox_to_polygon(box)
ax = plt.gca()
ax.add_patch(plt.Polygon(xy_rec, fill=False, edgecolor=color, linewidth=linewidth))
class PriorUtil(object):
"""Utility for LinkSeg prior boxes.
"""
def __init__(self, model, gamma=1.5):
source_layers_names = [l.name.split('/')[0] for l in model.source_layers]
self.source_layers_names = source_layers_names
self.model = model
self.image_size = model.input_shape[1:3]
self.image_h, self.image_w = self.image_size
self.prior_maps = []
previous_map_size = None
for i in range(len(source_layers_names)):
layer = model.get_layer(source_layers_names[i])
#map_w, map_h = map_size = layer.output_shape[1:3]
map_h, map_w = map_size = layer.output_shape[1:3]
if i > 0 and np.all(np.array(previous_map_size) != np.array(map_size)*2):
print('wrong source layer size...')
previous_map_size = map_size
a_l = gamma * self.image_w / map_w
m = PriorMap(source_layer_name=source_layers_names[i],
image_size=self.image_size,
map_size=map_size,
minmax_size=(a_l, a_l),
aspect_ratios=[1])
m.a_l = m.map_size[0]
self.prior_maps.append(m)
self.update_priors()
@property
def num_maps(self):
return len(self.prior_maps)
def update_priors(self):
map_offsets = [0]
priors = []
priors_xy = []
priors_wh = []
priors_variances = []
inter_layer_neighbors_idxs = []
cross_layer_neighbors_idxs = []
inter_layer_neighbors_valid = []
cross_layer_neighbors_valid = []
for i in range(len(self.prior_maps)):
m = self.prior_maps[i]
# compute prior boxes
m.compute_priors()
num_priors = len(m.priors)
# collect prior data
priors.append(m.priors)
priors_xy.append(m.priors_xy)
priors_wh.append(m.priors_wh)
priors_variances.append(m.priors_variances)
# compute inter layer neighbors
#w, h = m.map_size
h, w = m.map_size
xy_pos = np.asanyarray(np.meshgrid(np.arange(w), np.arange(h))).reshape(2,-1).T
xy = np.tile(xy_pos, (1,8))
xy += np.array([-1,-1, 0,-1, +1,-1,
-1, 0, +1, 0,
-1,+1, 0,+1, +1,+1])
m.inter_layer_neighbors_valid = (xy[:,0::2] >= 0) & (xy[:,0::2] < w) & (xy[:,1::2] >= 0) & (xy[:,1::2] < h)
m.inter_layer_neighbors_idxs = xy[:,1::2] * w + xy[:,0::2]
inter_layer_neighbors_idxs.append(m.inter_layer_neighbors_idxs + map_offsets[-1])
inter_layer_neighbors_valid.append(m.inter_layer_neighbors_valid)
# compute corss layer neighbors
if i > 0:
# previous map has always double the size of the current map
w *= 2; h *= 2 # has to be the same as self.prior_maps[i-1].map_size
xy = np.tile(xy_pos, (1,4))
xy *= 2
xy += np.array([0,0, 1,0,
0,1, 1,1])
m.cross_layer_neighbors_valid = (xy[:,0::2] >= 0) & (xy[:,0::2] < w) & (xy[:,1::2] >= 0) & (xy[:,1::2] < h)
m.cross_layer_neighbors_idxs = xy[:,1::2] * w + xy[:,0::2]
# corss layer neighbors are always valid!
cross_layer_neighbors_idxs.append(m.cross_layer_neighbors_idxs + map_offsets[-2])
cross_layer_neighbors_valid.append(m.cross_layer_neighbors_valid)
map_offsets.append(map_offsets[-1] + num_priors)
self.map_offsets = map_offsets
self.priors = np.concatenate(priors, axis=0)
self.priors_xy = np.concatenate(priors_xy, axis=0)
self.priors_wh = np.concatenate(priors_wh, axis=0)
self.priors_variances = np.concatenate(priors_variances, axis=0)
self.inter_layer_neighbors_idxs = np.concatenate(inter_layer_neighbors_idxs, axis=0)
self.cross_layer_neighbors_idxs = np.concatenate(cross_layer_neighbors_idxs, axis=0)
self.inter_layer_neighbors_valid = np.concatenate(inter_layer_neighbors_valid, axis=0)
self.cross_layer_neighbors_valid = np.concatenate(cross_layer_neighbors_valid, axis=0)
def encode(self, gt_data, debug=False):
"""Encode ground truth polygones to segments and links for local classification and regression.
# Arguments
gt_data: shape (boxes, 4 xy + classes)
# Return
shape (priors, 2 segment_labels + 5 segment_offsets + 2*8 inter_layer_links_labels + 2*4 cross_layer_links_labels)
"""
rboxes = []
polygons = []
for word in gt_data:
xy = np.reshape(word[:8], (-1, 2))
xy = np.copy(xy) * (self.image_w, self.image_h)
polygons.append(xy)
rbox = polygon_to_rbox(xy)
rboxes.append(rbox)
rboxes = self.gt_rboxes = np.array(rboxes)
polygnos = self.gt_polygons = np.array(polygons)
# compute segments
for i in range(len(self.prior_maps)):
m = self.prior_maps[i]
# compute priors
#m.compute_priors()
num_priors = len(m.priors)
# assigne gt to priors
a_l = m.minmax_size[0]
match_indices = np.full(num_priors, -1, dtype=np.int32)
min_lhs_eq_11 = np.full(num_priors, 1e6, dtype=np.float32)
for j in range(len(rboxes)): # ~12.9 ms
cx, cy, w, h, theta = rboxes[j]
c = rboxes[j,:2]
# constraint on ratio between box size and word height, equation (11)
lhs_eq_11 = max(a_l/h, h/a_l)
if lhs_eq_11 <= 1.5:
R = rot_matrix(theta)
for k in range(num_priors): # hurts
# is center of prior is in gt rbox
d = np.abs(np.dot(m.priors_xy[k]-c, R.T))
if d[0] < w/2. and d[1] < h/2.:
# is lhs of equation (11) minimal for prior
if lhs_eq_11 < min_lhs_eq_11[k]:
min_lhs_eq_11[k] = lhs_eq_11
match_indices[k] = j
m.match_indices = match_indices
segment_mask = match_indices != -1
# segment labels
m.segment_labels = np.empty((num_priors, 2), dtype=np.int8)
m.segment_labels[:, 0] = np.logical_not(segment_mask)
m.segment_labels[:, 1] = segment_mask
# compute offsets only for assigned boxes
m.segment_offsets = np.zeros((num_priors, 5))
pos_segment_idxs = np.nonzero(segment_mask)[0]
for j in pos_segment_idxs: # box_idx # ~4 ms
gt_idx = match_indices[j]
rbox = rboxes[gt_idx]
polygon = polygons[gt_idx]
cx, cy, w, h, theta = rbox
R = rot_matrix(theta)
prior_x, prior_y = m.priors_xy[j]
prior_w, prior_h = m.priors_wh[j]
# step 2 figuer 5, rotate word anticlockwise around the center of prior
d = rbox[:2] - m.priors_xy[j]
poly_loc = rbox_to_polygon(list(d) + [w, h, theta])
poly_loc_easy = polygon - m.priors_xy[j]
poly_loc_rot = np.dot(poly_loc, R.T)
# step 3 figure 5, crop word to left and right of prior
poly_loc_croped = np.copy(poly_loc_rot)
poly_loc_croped[:,0] = np.clip(poly_loc_croped[:,0], -prior_w/2., prior_w/2.)
# step 4 figure 5, rotate croped word box clockwisely
poly_loc_rot_back = np.dot(poly_loc_croped, R)
rbox_loc_rot_back = polygon_to_rbox(poly_loc_rot_back)
# encode, solve (3) to (7) to get local offsets
offset = np.array(list(rbox_loc_rot_back[:2]/a_l) +
list(np.log(rbox_loc_rot_back[2:4]/a_l)) +
[rbox_loc_rot_back[4]])
offset[:4] /= m.priors[j,-4:] # variances
m.segment_offsets[j] = offset
# for debugging local geometry
if debug:
prior_poly_loc = np.array([[-prior_w, +prior_h],
[+prior_w, +prior_h],
[+prior_w, -prior_h],
[-prior_w, -prior_h]])/2.
plt.figure(figsize=[10]*2)
ax = plt.gca()
ax.add_patch(plt.Polygon(prior_poly_loc, fill=False, edgecolor='r', linewidth=1))
ax.add_patch(plt.Polygon(poly_loc, fill=False, edgecolor='b', linewidth=1))
ax.add_patch(plt.Polygon(np.dot(poly_loc, R.T), fill=False, edgecolor='k', linewidth=1))
#ax.add_patch(plt.Polygon(poly_loc_easy, fill=False, edgecolor='r', linewidth=1))
#ax.add_patch(plt.Polygon(np.dot(poly_loc_easy, R.T), fill=False, edgecolor='y', linewidth=1))
ax.add_patch(plt.Polygon(poly_loc_croped, fill=False, edgecolor='c', linewidth=1))
ax.add_patch(plt.Polygon(poly_loc_rot_back, fill=False, edgecolor='y', linewidth=1))
lim = 50; plt.xlim(-lim,lim); plt.ylim(-lim,lim); plt.grid()
plt.show()
debug = False
# compute link labels
m.inter_layer_links_labels = np.zeros((num_priors,16), dtype=np.int8)
m.cross_layer_links_labels = np.zeros((num_priors,8), dtype=np.int8)
if i > 0:
previous_map = self.prior_maps[i-1]
# we only have to check neighbors if we are positive
for idx in pos_segment_idxs:
neighbor_idxs = m.inter_layer_neighbors_idxs[idx]
for n, neighbor_idx in enumerate(neighbor_idxs):
# valid neighbors
if m.inter_layer_neighbors_valid[idx,n]:
# neighbor matched to the same word
if match_indices[idx] == match_indices[neighbor_idx]:
# since we are positive and match to the same word, neighbor has to be positive
m.inter_layer_links_labels[idx, n*2+1] = 1
# would be nice, but we refere to invalid neighbors
#label = m.inter_layer_neighbors_valid[idx] & (match_indices[neighbor_idxs] == match_indices[idx])
#m.inter_layer_links_labels[idx, 1::2] = label
if i > 0:
neighbor_idxs = m.cross_layer_neighbors_idxs[idx]
for n, neighbor_idx in enumerate(neighbor_idxs):
# cross layer neighbors are always valid
if match_indices[idx] == previous_map.match_indices[neighbor_idx]:
m.cross_layer_links_labels[idx, n*2+1] = 1
m.inter_layer_links_labels[:,::2] = np.logical_not(m.inter_layer_links_labels[:,1::2])
m.cross_layer_links_labels[:,::2] = np.logical_not(m.cross_layer_links_labels[:,1::2])
# collect encoded ground truth
maps = self.prior_maps
segment_labels = np.concatenate([m.segment_labels for m in maps])
segment_offsets = np.concatenate([m.segment_offsets for m in maps])
inter_layer_links_labels = np.concatenate([m.inter_layer_links_labels for m in maps])
cross_layer_links_labels = np.concatenate([m.cross_layer_links_labels for m in maps])
return np.concatenate([segment_labels, segment_offsets, inter_layer_links_labels, cross_layer_links_labels], axis=1)
def decode(self, model_output,
segment_threshold=0.55, link_threshold=0.35, top_k_segments=800, debug=False, debug_combining=False):
"""Decode local classification and regression results to combined bounding boxes.
# Arguments
model_output: Array with SegLink model output of shape
(segments, 2 segment_label + 5 segment_offset + 2*8 inter_layer_links_label
+ 2*4 cross_layer_links_label)
segment_threshold: Threshold for filtering segment confidence, float betwen 0 and 1.
link_threshold: Threshold for filtering link confidence, float betwen 0 and 1.
# Return
Array with rboxes of shape (results, x + y + w + h + theta + confidence).
"""
segment_labels = model_output[:,0:2]
segment_offsets = model_output[:,2:7]
inter_layer_links_labels = model_output[:,7:23]
cross_layer_links_labels = model_output[:,23:31]
priors_xy = self.priors_xy
priors_wh = self.priors_wh
priors_variances = self.priors_variances
inter_layer_neighbors_idxs = self.inter_layer_neighbors_idxs
cross_layer_neighbors_idxs = self.cross_layer_neighbors_idxs
map_offsets = self.map_offsets
first_map_offset = map_offsets[1] # 64*64
# filter segments, only pos segments
confs = segment_labels[:,1]
segment_mask = confs > segment_threshold
segment_mask[np.argsort(-confs)[top_k_segments:]] = False
# filter links, pos links connected with pos segments
inter_layer_link_mask = (inter_layer_links_labels[:,1::2] > link_threshold) & np.repeat(segment_mask[np.newaxis, :], 8, axis=0).T
cross_layer_link_mask = (cross_layer_links_labels[:,1::2] > link_threshold) & np.repeat(segment_mask[np.newaxis, :], 4, axis=0).T
# all pos segments
segment_idxs = np.ix_(segment_mask)[0]
# all segments with pos links
#inter_layer_link_idxs = np.ix_(np.logical_and.reduce(inter_layer_link_mask, axis=1))[0]
#cross_layer_link_idxs = np.ix_(np.logical_and.reduce(cross_layer_link_mask, axis=1))[0]
results = []
if len(segment_idxs) > 0:
# decode segments
offsets = segment_offsets[segment_idxs] # delta(x,y,w,h,theta)_s
offsets = np.copy(offsets)
offsets[:,:4] *= priors_variances[segment_idxs] # variances
rboxes_s = np.empty([len(offsets), 5]) # (x,y,w,h,theta)_s
rboxes_s[:,0:2] = priors_wh[segment_idxs] * offsets[:,0:2] + priors_xy[segment_idxs]
rboxes_s[:,2:4] = priors_wh[segment_idxs] * np.exp(np.minimum(offsets[:,2:4], 16.)) # priors_wh is filled with a_l by default
rboxes_s[:,4] = offsets[:,4]
rboxes_s_dict = {segment_idxs[i]: rboxes_s[i] for i in range(len(segment_idxs))}
nodes = list(segment_idxs)
adjacency = {n:set() for n in segment_idxs}
for s_idx in segment_idxs:
# collect inter layer links
for n in np.ix_(inter_layer_link_mask[s_idx])[0]:
n_idx = inter_layer_neighbors_idxs[s_idx, n]
if n_idx in nodes:
# since we add only links to pos segments, they are also valid
adjacency[s_idx].add(n_idx)
adjacency[n_idx].add(s_idx)
# collect cross layer links
if s_idx >= first_map_offset:
for n in np.ix_(cross_layer_link_mask[s_idx])[0]:
n_idx = cross_layer_neighbors_idxs[s_idx-first_map_offset, n]
if n_idx in nodes:
adjacency[s_idx].add(n_idx)
adjacency[n_idx].add(s_idx)
# find connected components
ids = {n:None for n in segment_idxs}
# recursive
def dfs(node, group_id):
if ids[node] == None:
ids[node] = group_id
for a in adjacency[node]:
dfs(a, group_id)
for i in range(len(nodes)):
dfs(nodes[i], i)
# none-recursive
#stack = [*nodes]
#while len(stack) > 0:
# node = stack.pop()
# for n in adjacency[node]:
# if ids[n] == None:
# if ids[node] == None:
# ids[n] = node
# else:
# ids[n] = ids[node]
# stack.append(n)
groups = {i:[] for i in set(ids.values())}
for k, v in ids.items():
groups[v].append(k)
# combine segments
for f, k in enumerate(groups):
# decoded segment rboxes in group
idxs = np.array(groups[k])
rboxes_s = np.array([rboxes_s_dict[i] for i in idxs]) # (x,y,w,h,theta)_s
n = len(rboxes_s)
# step 2, algorithm 1
#print('rboxes_s[:,4]', rboxes_s[:,4].shape)
theta_b = mean(rboxes_s[:,4])
# step 3, algorithm 1, find minimizing b in y = a*x + b
# minimize sum (a*x_i + b - y_i)^2 leads to b = mean(y_i - a*x_i)
a = np.tan(-theta_b)
a = np.copysign(np.max([np.abs(a), eps]), a) # avoid division by zero
b = mean(rboxes_s[:,1] - a * rboxes_s[:,0])
# step 4, algorithm 1, project centers on the line
# construct line y_p = a_p*x_p + b_p that contains the point and is orthognonal to y = a*x + b
# with a_p = -1/a and b_p = y_p - a_p * x_p we get th point of intersection
# x_s = (b_p - b) / (a - a_p)
# y_s = a * x_s + b
x_proj = (rboxes_s[:,1] + 1/a * rboxes_s[:,0] - b) / (a + 1/a)
y_proj = a * x_proj + b
# REMARK
# set True, if you want the original SegLink decoding as described in the paper
# the issue with the original decoding is, that step 6 makes only sense if x_p
# and x_q are on the left and right edge and step 8 makes only sense if x_p and
# x_q are on the centers of the rightmost and leftmost segment
if False:
# find the extreme points
idx_p = np.argmax(x_proj)
idx_q = np.argmin(x_proj)
x_p, y_p = x_proj[idx_q], y_proj[idx_q]
x_q, y_q = x_proj[idx_p], y_proj[idx_p]
# step 5 to 10, algorithm 1, compute the rbox values
w_p = rboxes_s[idx_q,2]
w_q = rboxes_s[idx_p,2]
x_b = (x_p + x_q) / 2
y_b = (y_p + y_q) / 2
w_b = ((x_p - x_q)**2 + (y_p - y_q)**2)**0.5 + (w_p + w_q) / 2
h_b = mean(rboxes_s[:,3])
else:
idx_p = np.argmax(x_proj)
idx_q = np.argmin(x_proj)
w_p = rboxes_s[idx_p,2]
w_q = rboxes_s[idx_q,2]
x_p = rboxes_s[idx_p,0] + np.cos(theta_b) * w_p / 2
x_q = rboxes_s[idx_q,0] - np.cos(theta_b) * w_q / 2
y_p = a * x_p + b
y_q = a * x_q + b
x_b = (x_p + x_q) / 2
y_b = (y_p + y_q) / 2
w_b = ((x_p - x_q)**2 + (y_p - y_q)**2)**0.5
h_b = mean(rboxes_s[:,3])
rbox_b = [x_b, y_b, w_b, h_b, theta_b]
# confidence
confs_s = segment_labels[idxs,1]
#conf_b = mean(confs_s)
# weighted confidence by area of segments
boxes_s_area = rboxes_s[:, 2]*rboxes_s[:, 3]
conf_b = np.sum(confs_s * boxes_s_area) / np.sum(boxes_s_area)
results.append(rbox_b + [conf_b])
# for debugging geometric construction
if debug_combining:
ax = plt.gca()
for rbox in rboxes_s:
c = 'gmbck'
c = c[f%len(c)]
plot_rbox(rbox, color=c, linewidth=1)
# segment centers
plt.plot(rbox[0], rbox[1], 'o'+c, markersize=4)
# projected segment centers
plt.plot(x_proj, y_proj, 'oy', markersize=4)
# lines
x_l = np.array([0,self.image_w])
y_l = a * x_l + b
plt.plot(x_l, y_l, 'r')
# endpoints
plt.plot(x_p, y_p, 'or', markersize=6)
plt.plot(x_q, y_q, 'or', markersize=6)
# combined box
plot_rbox(rbox_b, color='r', linewidth=2)
if len(results) > 0:
results = np.asarray(results, dtype='float32')
else:
results = np.empty((0,6))
self.results = results
# debug
if debug:
ax = plt.gca()
# plot positive links between priors
inter_layer_link_mask = inter_layer_links_labels[:,1::2] > link_threshold
for idx in range(len(inter_layer_link_mask)):
p1 = priors_xy[idx]
n_mask = np.logical_and(inter_layer_link_mask[idx], self.inter_layer_neighbors_valid[idx])
for n_idx in inter_layer_neighbors_idxs[idx][n_mask]:
p2 = priors_xy[n_idx]
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'y-', linewidth=2)
cross_layer_link_mask = cross_layer_links_labels[:,1::2] > link_threshold
for idx in range(len(cross_layer_neighbors_idxs)):
p1 = priors_xy[idx+first_map_offset]
n_mask = cross_layer_link_mask[idx+first_map_offset]
for n_idx in cross_layer_neighbors_idxs[idx][n_mask]:
p2 = priors_xy[n_idx]
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-', color='orange', linewidth=2)
# plot segments
keys = list(rboxes_s_dict.keys())
for k in keys:
plot_rbox(rboxes_s_dict[k], color='k', linewidth=2)
# plot links between segments
for k in keys:
p1 = rboxes_s_dict[k][:2]
for m in adjacency[k]:
p2 = rboxes_s_dict[m][:2]
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'm-', linewidth=1)
# plot priors
for k in keys:
p1 = rboxes_s_dict[k][:2]
p2 = priors_xy[k]
plt.plot([p1[0]], [p1[1]], 'mo', markersize=4)
plt.plot([p2[0]], [p2[1]], 'go', markersize=4)
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'g-', linewidth=1)
return results
def plot_neighbors(self, map_idx, location_idxs=[], inter_layer=True, cross_layer=True, color='r'):
"""Draw the linked neighborhood for given locations in a prior map.
# Arguments
map_idx: The index of the considered prior map.
location_idxs: List of location indices in the prior map.
inter_layer: Boolean wheter inter layer links are drawn or not.
cross_layer: Boolean wheter cross layer links are drawn or not.
"""
m = self.prior_maps[map_idx]
location_idxs = [i for i in location_idxs if i < m.num_boxes]
if inter_layer:
for i in location_idxs:
x, y = m.box_xy[i]
for n_idx in m.inter_layer_neighbors_idxs[i][m.inter_layer_neighbors_valid[i]]:
n_x, n_y = m.box_xy[n_idx]
plt.plot([x, n_x], [y, n_y], '-.', color=color, linewidth=2)
if cross_layer and map_idx > 0:
n_m = self.prior_maps[map_idx-1]
for i in location_idxs:
x, y = m.box_xy[i]
for n_idx in m.cross_layer_neighbors_idxs[i][m.cross_layer_neighbors_valid[i]]:
n_x, n_y = n_m.box_xy[n_idx]
plt.plot([x, n_x], [y, n_y], '-.', color=color, linewidth=2)
def plot_gt(self):
ax = plt.gca()
# groud truth polygones
for p in self.gt_polygons:
ax.add_patch(plt.Polygon(p, fill=False, edgecolor='y', linewidth=4))
# groud truth rboxes
rboxes = self.gt_rboxes
for rbox in rboxes:
box = rbox_to_polygon(rbox)
ax.add_patch(plt.Polygon(box, fill=False, edgecolor='b', linewidth=2))
plt.plot(rboxes[:,0], rboxes[:,1], 'go', markersize=4)
def plot_assignment(self, map_idx):
"""Draw information about the encoded ground truth.
# Arguments
map_idx: The index of the considered ProrMap.
# Coloring
yellow/blue Rotated ground truth boxes.
magenta Assignment of prior locations to rotatet ground truth boxes.
cyan Links between prior locations.
"""
self.plot_gt()
ax = plt.gca()
rboxes = self.gt_rboxes
m = self.prior_maps[map_idx]
# assigned boxes
for idx in np.nonzero(m.segment_labels[:, 1])[0]:
p_prior = m.priors_xy[idx]
p_word = rboxes[m.match_indices[idx]][:2]
plt.plot([p_prior[0], p_word[0]], [p_prior[1], p_word[1]], 'm-', linewidth=1)
#plt.plot([p_word[0]], [p_word[1]], 'ro', markersize=8)
# links
labels = m.inter_layer_links_labels[:,1::2]
idxs = np.nonzero(np.any(labels, axis=1))[0]
for idx in idxs:
for n_idx in m.inter_layer_neighbors_idxs[idx, np.nonzero(labels[idx])[0]]:
x, y = m.priors_xy[idx]
n_x, n_y = m.priors_xy[n_idx]
plt.plot([x, n_x], [y, n_y], '-c', linewidth=1)
if map_idx > 0:
n_m = self.prior_maps[map_idx-1]
labels = m.cross_layer_links_labels[:,1::2]
idxs = np.nonzero(np.any(labels, axis=1))[0]
for idx in idxs:
x, y = m.priors_xy[idx]
for n_idx in m.cross_layer_neighbors_idxs[idx, np.nonzero(labels[idx])[0]]:
n_x, n_y = n_m.priors_xy[n_idx]
plt.plot([x, n_x], [y, n_y], '-c', linewidth=1)
def print_gt_stats(self):
"""Print information about the encoded ground truth"""
fstr = '%-5s %-5s %-5s %-5s'
print(fstr % ('map', 'seg', 'inter', 'cross'))
for i, m in enumerate(self.prior_maps):
print(fstr % (i, np.sum(m.segment_labels[:,1]),
np.sum(m.inter_layer_links_labels[:,1::2]),
np.sum(m.cross_layer_links_labels[:,1::2]) if m.cross_layer_links_labels is not None else None))
def plot_local_evaluation(self, encoded_gt, model_output, segment_threshold=0.6, link_threshold=0.45):
"""Draw segments and links for visual evaluation.
# Arguments
...
# Color coding for segments and links
green True Positive
red False Negative
blue Fales Positive
"""
gt_segment_mask = encoded_gt[:,1]
gt_inter_layer_link_mask = encoded_gt[:,8:23:2]
gt_cross_layer_links_mask = encoded_gt[:,24:31:2]
segment_mask = model_output[:,1] > segment_threshold
inter_layer_link_mask = model_output[:,8:23:2] > link_threshold
cross_layer_link_mask = model_output[:,24:31:2] > link_threshold
first_map_offset = self.map_offsets[1] # 64*64
for idx in range(len(segment_mask)):
p1 = self.priors_xy[idx]
# segments
g = gt_segment_mask[idx]
p = segment_mask[idx]
if g and p: # TP
plt.plot(p1[0], p1[1], 'og', markersize=6)
elif g and not p: # FN
plt.plot(p1[0], p1[1], 'or', markersize=6)
elif not g and p: # FP
plt.plot(p1[0], p1[1], 'ob', markersize=6)
# inter layer links
for i, n_idx in enumerate(self.inter_layer_neighbors_idxs[idx]):
if not self.inter_layer_neighbors_valid[idx, i]:
continue
p2 = self.priors_xy[n_idx]
g = gt_inter_layer_link_mask[idx,i]
p = inter_layer_link_mask[idx,i]
if g and p: # TP
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-g', linewidth=2)
elif g and not p: # FN
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-r', linewidth=2)
elif not g and p: # FP
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-b', linewidth=2)
# cross layer links
if idx > first_map_offset:
for i, n_idx in enumerate(self.cross_layer_neighbors_idxs[idx-first_map_offset]):
p2 = self.priors_xy[n_idx]
g = gt_inter_layer_link_mask[idx,i]
p = inter_layer_link_mask[idx,i]
if g and p: # TP
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-g', linewidth=2)
elif g and not p: # FN
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-r', linewidth=2)
elif not g and p: # FP
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], '-b', linewidth=2)
def plot_results(self, results=None, show_labels=False, color='r'):
"""Draw the combined bounding boxes."""
if results is None:
results = self.results
ax = plt.gca()
for r in results:
rbox = r[:5]
xy_rec = rbox_to_polygon(rbox)
xy_rec = np.flip(xy_rec, axis=0) # TODO: fix this
ax.add_patch(plt.Polygon(xy_rec, fill=False, edgecolor=color, linewidth=2))
if show_labels:
label_name = '%.2f' % (r[5],)
plt.text(xy_rec[0,0], xy_rec[0,1],
label_name, rotation=rbox[4]/np.pi*180,
bbox={'facecolor':color, 'alpha':0.5})