This repository has been archived by the owner on Aug 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 81
/
extract_nexrad.c
315 lines (267 loc) · 11.5 KB
/
extract_nexrad.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//
// Copyright 2015, Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you may copy, redistribute and/or modify it
// under the terms of the GNU General Public License as published by the
// Free Software Foundation, either version 2 of the License, or (at your
// option) any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <math.h>
#include "uat.h"
#include "uat_decode.h"
#include "reader.h"
#define BLOCK_WIDTH (48.0/60.0)
#define WIDE_BLOCK_WIDTH (96.0/60.0)
#define BLOCK_HEIGHT (4.0/60.0)
#define BLOCK_THRESHOLD 405000
#define BLOCKS_PER_RING 450
//
// This reads demodulated uplink messages and extracts NEXRAD global block representation formats - type 63 and 64
//
// The output format is a series of lines, one line per decoded block.
// Each line is space-separated and is formatted as:
//
// NEXRAD <type> <hour>:<minute> <scale> <north> <west> <height> <width> <data>
//
// where:
// <type> is Regional (for type 63) or CONUS (for type 64)
// <hour>:<minute> is the time from the PDU header - all blocks from one composite radar image will have the same time
// <scale> is the scale value of this block - 0 (high res), 1 (med res), or 2 (low res)
// <north> is the north edge of the block, in _integer arcminutes_. Divide by 60 to get degrees.
// <west> is the west edge of the block, in _positive integer arcminutes_. Divide by 60 to get degrees; subtract 360 if you want the conventional -180..+180 range.
// <height> is the height of the block, in integer arcminutes of latitude
// <width> is the width of the block, in integer arcminutes of longitude
//
// Each block contains 128 evenly spaced bins, in a grid of 32 (longitude) x 4 (latitude), working west-to-east then north-to-south.
// i.e. each bin represents a pixel that covers <width>/32 arcminutes of longitude by <height>/4 arcminutes of latitude.
//
// <data> is a string of 128 digits (no spaces); each character represents the intensity of one bin, in the order above.
//
// Given:
// bn - block number
// ns - north/south flag
// sf - scale factor
//
// compute the northwest corner of the referenced block and place it in (*latN, *lonW)
// and place the total height and width of the block in (*latSize, *lonSize)
void block_location(int bn, int ns, int sf, double *latN, double *lonW, double *latSize, double *lonSize)
{
// With SF=0:
// blocks are (48 arcminutes longitude) x (4 arcminute latitude) between 0 and 60 degrees latitude
// (450 blocks for each ring of latitude)
// blocks are (96 arcminutes longitude) x (4 arcminute latitude) between 60 and 90 degrees latitude
// (225 blocks for each ring of latitude) - but the block numbering continues to use
// a 48-arcminute spacing, so only even numbered blocks are meaningful.
// block zero is immediately northeast of (0,0), then blocks are numbered east-to-west, south-to-north.
//
// Southern hemisphere numbering is mirrored around the equator, and indicated by the "ns" flag.
// ^N
// | 405446 | 405448 | 405000 | 405002 |
// --------------------------------------------------------- 60 00' 00" N
// |404996|404997|404998|404999|404550|404551|404552|404553|
// --------------------------------------------------------- 59 56' 00" N
// ...
// | 896 | 897 | 898 | 899 | 450 | 451 | 452 | 453 |
// --------------------------------------------------------- 00 04' 00" N
// | 446 | 447 | 447 | 449 | 0 | 1 | 2 | 3 |
//W<------------------------------------------------------->E equator
// | 446* | 447* | 447* | 449* | 0* | 1* | 2* | 3* |
// --------------------------------------------------------- 00 04' 00" S
// | 896* | 897* | 898* | 899* | 450* | 451* | 452* | 453* |
// 2d24'W 1d36'W 0d48'W V 0d48'E 1d36'E 2d24'E
// (* = ns_flag set)
// Each block is subdivided into 32 (longitude) x 4 (latitude) bins.
// The bins are numbered starting at the northwest corner of the block,
// west-to-east then north-to-south.
// block 0:
//
// ------------------------------------ <- 0d04m00s N
// | 0 1 2 3 ... 28 29 30 31| <- each bin is 1 arcminute tall
// | 32 33 34 35 ... 60 61 62 63|
// | 64 65 66 67 ... 92 93 94 95|
// | 96 97 98 99 ... 124 125 126 127|
// ------------------------------------ <- 0N - equator
// ^ ^ each bin is ^
// 0E 1.5 arcminute wide 0d48m00s E
// With SF=1, an identical block numbering is used to locate the northwest corner of the block,
// but then each bin is 5x larger in both axes i.e. 240 x 20 or 480 x 20 arcminutes.
// this means that the block data will actually overlap 24 other block positions.
// With SF=2, it works like SF=1 but with a scale factor of 9x.
double raw_lat, raw_lon;
double scale;
if (sf == 1)
scale = 5.0;
else if (sf == 2)
scale = 9.0;
else
scale = 1.0;
if (bn >= BLOCK_THRESHOLD) {
// 60-90 degrees - even-numbered blocks only
bn = bn & ~1;
}
raw_lat = BLOCK_HEIGHT * trunc(bn / BLOCKS_PER_RING);
raw_lon = (bn % BLOCKS_PER_RING) * BLOCK_WIDTH;
*lonSize = (bn >= BLOCK_THRESHOLD ? WIDE_BLOCK_WIDTH : BLOCK_WIDTH) * scale;
*latSize = BLOCK_HEIGHT * scale;
// raw_lat/raw_lon points to the southwest corner in the northern hemisphere version
*lonW = raw_lon;
if (ns) {
// southern hemisphere, mirror along the equator
*latN = 0 - raw_lat;
} else {
// adjust to the northwest corner
*latN = raw_lat + BLOCK_HEIGHT;
}
}
void decode_nexrad(struct fisb_apdu *fisb)
{
// Header:
//
// byte/bit 7 6 5 4 3 2 1 0
// 0 |RLE|NS | Scale | MSB Block # |
// 1 | Block # |
// 2 | Block # LSB |
int rle_flag = (fisb->data[0] & 0x80) != 0;
int ns_flag = (fisb->data[0] & 0x40) != 0;
int block_num = ((fisb->data[0] & 0x0f) << 16) | (fisb->data[1] << 8) | (fisb->data[2]);
int scale_factor = (fisb->data[0] & 0x30) >> 4;
// now decode the bins
if (rle_flag) {
// One bin, 128 values, RLE-encoded
int i;
double latN = 0, lonW = 0, latSize = 0, lonSize = 0;
block_location(block_num, ns_flag, scale_factor, &latN, &lonW, &latSize, &lonSize);
fprintf(stdout, "NEXRAD %s %02d:%02d %d %.0f %.0f %.0f %.0f ",
fisb->product_id == 63 ? "Regional" : "CONUS",
fisb->hours,
fisb->minutes,
scale_factor,
latN * 60,
lonW * 60,
latSize * 60,
lonSize * 60);
// each byte following the header is:
// 7 6 5 4 3 2 1 0
// | runlength - 1 | intensity |
for (i = 3; i < fisb->length; ++i) {
int intensity = fisb->data[i] & 7;
int runlength = (fisb->data[i] >> 3) + 1;
while (runlength-- > 0)
fprintf(stdout, "%d", intensity);
}
fprintf(stdout, "\n");
} else {
int L = fisb->data[3] & 15;
int i;
int row_start, row_offset, row_size;
//
// Empty block representation, representing one
// or more blocks that are completely empty of
// data.
//
// 7 6 5 4 3 2 1 0
// 3 |b+4 |b+3 |b+2 |b+1 | length (L) |
// 4 |b+12|b+11|b+10|b+9 |b+8 |b+7 |b+6 |b+5 |
// ...
// 3+L |b+8L-3 ... b+8L+4|
// The block number from the header is always
// empty.
//
// If the bit for b+x is empty, then the block
// X to the right of the block from the header is
// empty. Note that the block is _always on the
// same row_ even if the offset would make the
// block cross the 0E meridian, so it is not simply
// a case of adding to the block number.
// find the lowest-numbered block of this row
if (block_num >= 405000) {
row_start = block_num - ((block_num - 405000) % 225);
row_size = 225;
} else {
row_start = block_num - (block_num % 450);
row_size = 450;
}
// find the offset of the first block in this row handled
// by this message
row_offset = block_num - row_start;
for (i = 0; i < L; ++i) {
int bb;
int j;
if (i == 0)
bb = (fisb->data[3] & 0xF0) | 0x08; // synthesize a first byte in the same format as all the other bytes
else
bb = (fisb->data[i+3]);
for (j = 0; j < 8; ++j) {
if (bb & (1 << j)) {
// find the relevant block for this bit, limited
// to the same row as the original block.
int row_x = (row_offset + 8*i + j - 3) % row_size;
int bn = row_start + row_x;
double latN = 0, lonW = 0, latSize = 0, lonSize = 0;
int k;
block_location(bn, ns_flag, scale_factor, &latN, &lonW, &latSize, &lonSize);
fprintf(stdout, "NEXRAD %s %02d:%02d %d %.0f %.0f %.0f %.0f ",
fisb->product_id == 63 ? "Regional" : "CONUS",
fisb->hours,
fisb->minutes,
scale_factor,
latN * 60,
lonW * 60,
latSize * 60,
lonSize * 60);
// seems to work best if we assume that
// CONUS empty blocks = intensity 1 (valid data, but no precipitation)
// regional empty blocks = intensity 0 (valid data <5dBz)
for (k = 0; k < 128; ++k)
fprintf(stdout, "%d", (fisb->product_id == 63 ? 0 : 1));
fprintf(stdout, "\n");
}
}
}
}
}
void handle_frame(frame_type_t type, uint8_t *frame, int len, void *extra)
{
if (type == UAT_UPLINK) {
struct uat_uplink_mdb mdb;
int i;
uat_decode_uplink_mdb(frame, &mdb);
if (!mdb.app_data_valid)
return;
for (i = 0; i < mdb.num_info_frames; ++i) {
struct fisb_apdu *fisb;
if (!mdb.info_frames[i].is_fisb)
continue;
fisb = &mdb.info_frames[i].fisb;
if (fisb->product_id != 63 && fisb->product_id != 64)
continue;
decode_nexrad(fisb);
}
}
fflush(stdout);
}
int main(int argc, char **argv)
{
struct dump978_reader *reader;
int framecount;
reader = dump978_reader_new(0,0);
if (!reader) {
perror("dump978_reader_new");
return 1;
}
while ((framecount = dump978_read_frames(reader, handle_frame, NULL)) > 0)
;
if (framecount < 0) {
perror("dump978_read_frames");
return 1;
}
return 0;
}