-
Notifications
You must be signed in to change notification settings - Fork 0
/
ELCplotter_new.py
166 lines (146 loc) · 7.15 KB
/
ELCplotter_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator, FormatStrFormatter
'''
Meredith Rawls, Sep 2014
Updated, somewhat friendlier than 'ELCplotter.py'
Plotting routine for geneticELC output.
Save this program in a directory where you've run geneticELC or markovELC, and run it.
It will make a plot that has both light curve data w/fit and RV data w/fit.
There are also residuals in the plots!
'''
# Colors for plots. Selected with help from colorbrewer.
red = '#e34a33' # red, star 1
yel = '#fdbb84' # yellow, star 2
# Read in everything
f1 = '../../RG_ELCmodeling/9246715/newtrial3/modelU.mag'
f2 = '../../RG_ELCmodeling/9246715/newtrial3/ELCdataU.fold'
f3 = '../../RG_ELCmodeling/9246715/newtrial3/star1.RV'
f4 = '../../RG_ELCmodeling/9246715/newtrial3/star2.RV'
f5 = '../../RG_ELCmodeling/9246715/newtrial3/ELCdataRV1.fold'
f6 = '../../RG_ELCmodeling/9246715/newtrial3/ELCdataRV2.fold'
phase_mod,mag_mod = np.loadtxt(f1, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_dat,mag_dat = np.loadtxt(f2, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv1,rv1 = np.loadtxt(f3, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv2,rv2 = np.loadtxt(f4, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv1dat,rv1dat,rv1err = np.loadtxt(f5, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
phase_rv2dat,rv2dat,rv2err = np.loadtxt(f6, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
print ('Done reading data!')
for phase in phase_mod:
if phase > 1:
print('You need to use ELCplotter_unfold.py instead of this program.')
print('Your first column is times, not phases, e.g. {0}'.format(phase))
raise IOError
# OPTIONAL ADJUSTMENT B/C FINAL GENETICELC RV MODEL OUTPUT IS SHIFTED BY GAMMA
#gamma = input("Enter gamma adjustment (0 for none): ")
#rv1 = rv1 + gamma
#rv2 = rv2 + gamma
if np.abs(np.median(mag_mod) - np.median(mag_dat)) > 1:
print('Adjusting magnitude of model light curve...')
mag_mod = mag_mod + (np.median(mag_dat) - np.median(mag_mod))
# Interpolate model onto data phase grid, for residuals
newmag_model = np.interp(phase_dat, phase_mod, mag_mod)
newrv1 = np.interp(phase_rv1dat, phase_rv1, rv1)
newrv2 = np.interp(phase_rv2dat, phase_rv2, rv2)
lcresid = mag_dat - newmag_model
rv1resid = rv1dat - newrv1
rv2resid = rv2dat - newrv2
print ("Done interpolating!")
# Make plots
# First, define some handy global parameters for the plots
phasemin = 0
phasemax = 1
magdim = 9.52 # remember magnitudes are backwards, dangit
magbright = 9.251
rvmin = -60
rvmax = 50
primary_phasemin = 0.48
primary_phasemax = 0.52
secondary_phasemin = 0.194
secondary_phasemax = 0.234
magresid_min = 0.010 # remember magnitudes are backwards, dangit
magresid_max = -0.010
rvresid_min = -6
rvresid_max = 6
# Light curve
ax1 = plt.subplot2grid((12,1),(4,0), rowspan=3)
plt.axis([phasemin, phasemax, magdim, magbright])
plt.tick_params(axis='both', which='major')
plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=1, mew=0) #lc data
plt.plot(phase_mod, mag_mod, 'k', lw=1.5, label='ELC Model') #lc model
ax1.set_ylabel('Magnitude', size=18)
ax1.set_xticklabels([])
# Radial velocities
ax2 = plt.subplot2grid((12,1),(1,0), rowspan=3)
plt.subplots_adjust(wspace = 0.0001, hspace=0.0001)
plt.axis([phasemin, phasemax, rvmin, rvmax])
plt.errorbar(phase_rv1dat, rv1dat, yerr=rv1err, marker='o', color=red, mec=red, ls='None') #rv1 data
plt.errorbar(phase_rv2dat, rv2dat, yerr=rv2err, marker='o', color=yel, mec=yel, ls='None') #rv2 data
plt.plot(phase_rv1, rv1, color='k', lw=1.5) #rv1 model
plt.plot(phase_rv2, rv2, color='k', lw=1.5) #rv2 model
ax2.set_ylabel('Radial Velocity (km s$^{-1}$)', size=18)
ax2.set_xticklabels([])
# Light curve residuals
axr1 = plt.subplot2grid((12,1),(7,0))
axr1.axis([phasemin, phasemax, magresid_min, magresid_max])
axr1.set_yticks([-0.006, 0, 0.006])
axr1.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=1, mew=0) #lc residual
# Radial velocity residuals
axr2 = plt.subplot2grid((12,1),(0,0))
axr2.axis([phasemin, phasemax, rvresid_min, rvresid_max])
axr2.set_yticks([-4,0,4])
plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75')
plt.errorbar(phase_rv1dat, rv1resid, yerr=rv1err, marker='o', color=red, mec=red, ls='None') #rv1 residual
plt.errorbar(phase_rv2dat, rv2resid, yerr=rv2err, marker='o', color=yel, mec=yel, ls='None') #rv2 residual
#plt.xlabel('Orbital Phase (conjunction at $\phi = 0.5$)', size=20) # EXTRA LABEL
axr2.set_xticklabels([])
# Zoom-in of shallower (secondary) eclipse
ax3 = plt.subplot2grid((12,2),(9,0), rowspan=2)
plt.axis([secondary_phasemin, secondary_phasemax, magdim, magbright])
ax3.xaxis.set_major_locator(IndexLocator(0.01, 0.20)) # may cause a tick error if limits are crazy
ax3.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plt.plot(phase_dat, mag_dat, color=yel, marker='.', ls='None', ms=2, mew=0) #lc data
plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model
ax3.set_ylabel('Magnitude')
ax3.set_xticklabels([])
# Zoom-in of deeper (primary) eclipse
ax4 = plt.subplot2grid((12,2),(9,1), rowspan=2)
ax4.set_yticklabels([])
plt.axis([primary_phasemin, primary_phasemax, magdim, magbright])
ax4.xaxis.set_major_locator(IndexLocator(0.01, 0.49)) # may cause a tick error if limits are crazy
ax4.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))
plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=2, mew=0) #lc data
plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model
ax4.set_xticklabels([])
# Zoom plot residuals, shallower (secondary) eclipse
axr3 = plt.subplot2grid((12,2),(11,0))
plt.axis([secondary_phasemin, secondary_phasemax, magresid_min, magresid_max])
axr3.xaxis.set_major_locator(IndexLocator(0.01, 0.20)) # may cause a tick error if limits are crazy
axr3.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))
axr3.set_yticks([-0.006, 0, 0.006])
axr3.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
plt.axhline(y=0, xmin=0, xmax=2, color='0.75')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=2, mew=0) #lc residual
# Zoom plot residuals, deeper (primary) eclipse
axr4 = plt.subplot2grid((12,2),(11,1))
plt.axis([primary_phasemin, primary_phasemax, magresid_min, magresid_max])
axr4.xaxis.set_major_locator(IndexLocator(0.01, 0.49)) # may cause a tick error if limits are crazy
axr4.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))
axr4.set_yticks([-0.006, 0, 0.006])
axr4.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
plt.axhline(y=0, xmin=0, xmax=2, color='0.75')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=2, mew=0) #lc residual
axr4.set_yticklabels([])
# Labels using overall figure as a reference
plt.figtext(0.5, 0.04, 'Orbital Phase (conjunction at $\phi = 0.5$)', ha='center', va='center', size=25)
plt.figtext(0.135, 0.18, 'Secondary')
plt.figtext(0.525, 0.18, 'Primary')
plt.figtext(0.06, 0.86, '$\Delta$')
plt.figtext(0.04, 0.395, '$\Delta$')
plt.figtext(0.04, 0.125, '$\Delta$')
ax1.legend(loc='lower right', frameon=False, prop={'size':20})
print ("Done preparing plot!")
plt.show()