-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyzeCa1.m
209 lines (192 loc) · 6.24 KB
/
analyzeCa1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
% for analysis of gcamp6s and 7s calcium datasets, malgamal@mgh.harvard.edu
% with neuropil correction for excitatory cells
function [n_spikes] = analyzeCa(Project_path, name)
load(sprintf('%s/data/%s.mat', Project_path, name));
oasis_setup;
smin = evalin('base','smin');
lambda = evalin('base','lambda');
thr = evalin('base','thr_inactive');
if exist('dt') ==1
dt=dt;
else
dt = 1/ops.fs;
end
%% preprocessing and removing dim cells for traces with neuropil ROIs and S2P files
if dt/0.2 <=0.9
dt =dt;
elseif dt/0.2>1.1;
dt=dt;
else dt =0.2;
end
dt =dt;
if exist('Fneu') ==1
iscell2=iscell(:,1);
Fb= transpose(mean(F')./mean(Fneu'));% brightness relative to neruopil
Remove2=find(Fb<0.8);% only cells brighter than neuropil are included
%Remove2=find(Fb>=0.95);% only cells brighter than neuropil are included
Remove1=find(iscell2==0);% Remove non-cell ROIs
Remove = sortrows([Remove2;Remove1]);
Remove = unique(Remove);
F(Remove,:) = [];
Fneu(Remove,:) = [];
%redcell(Remove,:) = [];
for u= [Remove]; % removing iscell 0 from stat
stat(u) = [];
end
data_original = F;
else
data = data'; % if not using S2P
data_original = data'; % if not using S2P
end
%% ROI centers for distance estimation, only if usinf
fs = 1/ dt;% original sample rate
%% neuropil correction and eliminating negative values
if exist('Fneu') ==1
data = F -(0.7*Fneu);
%data = F -(0.0*Fneu);% for SST and PV
for n = 1:size (data,1);
ndata3 = data (n,:);
mindata2 = min (ndata3);
if mindata2 <0 % adding an offset for negative data
ndata2 = max(ndata3,0);% to convert negatives to 0
warn = {'negative F-Fneu', name, n};
disp (warn)
else
ndata2 = ndata3;
end
ndata (n,:) = ndata2 (:)';
dim= stat{1,n};
dim2 = dim.med;
dim3= [dim2, n];
center(n, :) = dim3(:)';% ROI centers and their S2p #
end
else
ndata= data;
center = NaN;
end
%% Moving averge baselining, adpted fron feng paper , (chen 2020) without high passfilter
% now take a moving average of a few frames for a first-pass low-pass
% filter
%framesToMovAvg = 3;
%ndata = nPointMean(ndata,framesToMovAvg);
% Now let's estimate the baselines. The quantile cut-off is calculated
% based on the statistics of the F distributions.
baselineWindow = 250;
blCutOffs = computeQunatileCutoffs(ndata);
somaticF_BLs=slidingBaseline2(ndata,baselineWindow,blCutOffs);
% now the DF is the (F-BL)/BL
bdata = (ndata - somaticF_BLs)./abs(somaticF_BLs);
bdata = bdata'*100;% %df/f
for n = 1:size (bdata,2); % one more baseline correction using Oasis
y2 = bdata(:,n);
miny =abs (min(y2));
%miny=1000;
y = y2 + miny;
bmin= prctile (y2, 5);
[b1, sn1] = estimate_baseline_noise2(y, bmin);
if b1 > prctile (y, 65)
b2 = 0;
warn = {'Possible Baseline Error', name, n};
disp (warn)
elseif b1 < prctile (y, 5)
b2 = 0;
warn = {'Possible Baseline Error', name, n};
disp (warn)
else
b2 = b1-miny;
end
miny2(:,n)=miny(:)';
btemp(:,n)= b1(:)';
b(:,n)= b2(:)';
sn (:,n)= sn1(:)';
bmin2 (:,n)= bmin(:)';
ytemp(:,n)= y(:)';
if max (y2)> 800;
warn = {'high df', name, n};
disp (warn)
elseif min (y2)< -100;
warn = {'high df', name, n};
disp (warn)
else
end
end
%% deconvolution using Oasis
bdata = bdata-b;
n_traces = size (bdata,2);
t_time = (length (bdata))/fs;
bdata = double(bdata);
g = exp(-(1/(1.25*fs))); % AR coefficient
for j = 1:n_traces;
y = bdata(:, j);
[c_oasis, s_oasis, options] = deconvolveCa(y, 'ar1', g, 'foopsi', 'lambda', lambda, 'smin', smin);
%%
spikes(j, :) = s_oasis(:)';
options2(j, :) = options(:)';
traces(j, :) = c_oasis(:)';
dffilt (j, :) = y (:)';
end
%% df averaging
dffilt = transpose(dffilt);
spikes = transpose(spikes);
traces = transpose(traces);
spikes2 = spikes; % to be used to remove zero elements
%% number of spikes and spike rate
n_traces2 = size(spikes, 2);
for j = 1:n_traces2
spikes3 = spikes(:, j);
Nspikes = nnz(spikes3);
Nspikes= Nspikes/ t_time;
n_spikes(j, :) = Nspikes(:)';
end
n_spikes = double(n_spikes'); % spikes per min
toriginal= 0:dt:t_time-dt;
%% ploting
%
figure;plot(toriginal,data,'DisplayName','original data');
t= title('original');
t.FontSize = 48;
xlabel('Time (s)','FontSize', 32)
ylabel('au','FontSize', 32)
plottools('on')
figure;plot(toriginal,dffilt,'DisplayName',name);
t = title('Baselined');
t.FontSize = 48;
xlabel('Time (s)','FontSize', 32)
ylabel('%\DeltaF/F_{0}','FontSize', 32)
plottools('on')
figure;plot(toriginal,traces,'DisplayName','denoised traces');
t= title('Denoised traces');
t.FontSize = 48;
xlabel('Time (s)','FontSize', 32)
ylabel('%\DeltaF/F_{0}','FontSize', 32)
plottools('on')
figure;plot(toriginal, spikes,'DisplayName',name);
t= title('Events');
t.FontSize = 48;
xlabel('Time (s)', 'FontSize', 32)
ylabel('%\DeltaF/F_{0}','FontSize', 32)
plottools('on')
figurepalette('toff')
propertyeditor('off')
%close all;
%}
%% averaging per fov
spikes2(spikes2<=0) = NaN; % % removing zeors and negatives before averaging
mspikes = mean (spikes2,'omitnan')'; % average spikes after removing silent cells
spike_rate0 = n_spikes; % icluding inactive cells
spike_rate = n_spikes'; % removingg inactive cell
%% writing tables
T = array2table (spike_rate);
table = sprintf('%s/analyzed/%s.mat', Project_path);
filename = [name, '_event_rate.xls'];
table = fullfile (table, filename);
writetable(T, table)
%% removing cells below thr
spike_rate(spike_rate<= thr) = NaN; % removing inactive cells
avspike_rate0 = mean(spike_rate0,'omitnan'); % icluding inactive cells
avspike_rate = mean(spike_rate,'omitnan'); % without inactive cells%% averaging
%
save(sprintf('%s/analyzed/%s.mat', Project_path, name), 'name','avspike_rate0', 'avspike_rate','n_spikes','spikes', 'traces', 'dffilt', 'bdata', 'fs', 'center');
save(sprintf('%s/options/%s.mat', Project_path, name), 'name','spikes', 'traces', 'options2');
save(sprintf('%s/analyzeddf/%s.mat', Project_path, name), 'name', 'spikes','mspikes');
%}