-
Notifications
You must be signed in to change notification settings - Fork 34
/
utils.py
87 lines (66 loc) · 2.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import random
import logging
import torch
import numpy as np
from seqeval.metrics import precision_score, recall_score, f1_score, classification_report
from transformers import (
BertConfig,
DistilBertConfig,
ElectraConfig,
ElectraTokenizer,
BertTokenizer,
BertForTokenClassification,
DistilBertForTokenClassification,
ElectraForTokenClassification
)
from tokenization_kobert import KoBertTokenizer
MODEL_CLASSES = {
'kobert': (BertConfig, BertForTokenClassification, KoBertTokenizer),
'distilkobert': (DistilBertConfig, DistilBertForTokenClassification, KoBertTokenizer),
'bert': (BertConfig, BertForTokenClassification, BertTokenizer),
'kobert-lm': (BertConfig, BertForTokenClassification, KoBertTokenizer),
'koelectra-base': (ElectraConfig, ElectraForTokenClassification, ElectraTokenizer),
'koelectra-small': (ElectraConfig, ElectraForTokenClassification, ElectraTokenizer),
}
MODEL_PATH_MAP = {
'kobert': 'monologg/kobert',
'distilkobert': 'monologg/distilkobert',
'bert': 'bert-base-multilingual-cased',
'kobert-lm': 'monologg/kobert-lm',
'koelectra-base': 'monologg/koelectra-base-discriminator',
'koelectra-small': 'monologg/koelectra-small-discriminator',
}
def get_test_texts(args):
texts = []
with open(os.path.join(args.data_dir, args.test_file), 'r', encoding='utf-8') as f:
for line in f:
text, _ = line.split('\t')
text = text.split()
texts.append(text)
return texts
def get_labels(args):
return [label.strip() for label in open(os.path.join(args.data_dir, args.label_file), 'r', encoding='utf-8')]
def load_tokenizer(args):
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(labels, preds):
assert len(preds) == len(labels)
return f1_pre_rec(labels, preds)
def f1_pre_rec(labels, preds):
return {
"precision": precision_score(labels, preds, suffix=True),
"recall": recall_score(labels, preds, suffix=True),
"f1": f1_score(labels, preds, suffix=True)
}
def show_report(labels, preds):
return classification_report(labels, preds, suffix=True)