-
Notifications
You must be signed in to change notification settings - Fork 29
/
__init__.py
300 lines (244 loc) · 12.3 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
from comfy import model_management
import torch
import comfy.utils
import numpy as np
import cv2
import math
from custom_nodes.facerestore_cf.facelib.utils.face_restoration_helper import FaceRestoreHelper
from custom_nodes.facerestore_cf.facelib.detection.retinaface import retinaface
from torchvision.transforms.functional import normalize
from comfy_extras.chainner_models import model_loading
import folder_paths
import sys
from custom_nodes.facerestore_cf.basicsr.utils.registry import ARCH_REGISTRY
# import codeformer_arch
dir_facerestore_models = os.path.join(folder_paths.models_dir, "facerestore_models")
dir_facedetection_models = os.path.join(folder_paths.models_dir, "facedetection")
os.makedirs(dir_facerestore_models, exist_ok=True)
os.makedirs(dir_facedetection_models, exist_ok=True)
folder_paths.folder_names_and_paths["facerestore_models"] = ([dir_facerestore_models], folder_paths.supported_pt_extensions)
folder_paths.folder_names_and_paths["facedetection_models"] = ([dir_facedetection_models], folder_paths.supported_pt_extensions)
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
class FaceRestoreCFWithModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "facerestore_model": ("FACERESTORE_MODEL",),
"image": ("IMAGE",),
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],),
"codeformer_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05})
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "restore_face"
CATEGORY = "facerestore_cf"
def __init__(self):
self.face_helper = None
def restore_face(self, facerestore_model, image, facedetection, codeformer_fidelity):
print(f'\tStarting restore_face with codeformer_fidelity: {codeformer_fidelity}')
device = model_management.get_torch_device()
facerestore_model.to(device)
if self.face_helper is None:
self.face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device)
image_np = 255. * image.cpu().numpy()
total_images = image_np.shape[0]
out_images = np.ndarray(shape=image_np.shape)
for i in range(total_images):
cur_image_np = image_np[i,:, :, ::-1]
original_resolution = cur_image_np.shape[0:2]
if facerestore_model is None or self.face_helper is None:
return image
self.face_helper.clean_all()
self.face_helper.read_image(cur_image_np)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
restored_face = None
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
#output = facerestore_model(cropped_face_t, w=strength, adain=True)[0]
# output = facerestore_model(cropped_face_t)[0]
output = facerestore_model(cropped_face_t, w=codeformer_fidelity)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
self.face_helper.add_restored_face(restored_face)
self.face_helper.get_inverse_affine(None)
restored_img = self.face_helper.paste_faces_to_input_image()
restored_img = restored_img[:, :, ::-1]
if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
self.face_helper.clean_all()
# restored_img = cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB)
out_images[i] = restored_img
restored_img_np = np.array(out_images).astype(np.float32) / 255.0
restored_img_tensor = torch.from_numpy(restored_img_np)
return (restored_img_tensor,)
class CropFace:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],)
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop_face"
CATEGORY = "facerestore_cf"
def __init__(self):
self.face_helper = None
def crop_face(self, image, facedetection):
device = model_management.get_torch_device()
if self.face_helper is None:
self.face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device)
image_np = 255. * image.cpu().numpy()
total_images = image_np.shape[0]
out_images = np.ndarray(shape=(total_images, 512, 512, 3))
next_idx = 0
for i in range(total_images):
cur_image_np = image_np[i,:, :, ::-1]
original_resolution = cur_image_np.shape[0:2]
if self.face_helper is None:
return image
self.face_helper.clean_all()
self.face_helper.read_image(cur_image_np)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
faces_found = len(self.face_helper.cropped_faces)
if faces_found == 0:
next_idx += 1 # output black image for no face
if out_images.shape[0] < next_idx + faces_found:
print(out_images.shape)
print((next_idx + faces_found, 512, 512, 3))
print('aaaaa')
out_images = np.resize(out_images, (next_idx + faces_found, 512, 512, 3))
print(out_images.shape)
for j in range(faces_found):
cropped_face_1 = self.face_helper.cropped_faces[j]
cropped_face_2 = img2tensor(cropped_face_1 / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_2, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_3 = cropped_face_2.unsqueeze(0).to(device)
cropped_face_4 = tensor2img(cropped_face_3, rgb2bgr=True, min_max=(-1, 1)).astype('uint8')
cropped_face_5 = cv2.cvtColor(cropped_face_4, cv2.COLOR_BGR2RGB)
out_images[next_idx] = cropped_face_5
next_idx += 1
cropped_face_6 = np.array(out_images).astype(np.float32) / 255.0
cropped_face_7 = torch.from_numpy(cropped_face_6)
return (cropped_face_7,)
class FaceRestoreModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model_name": (folder_paths.get_filename_list("facerestore_models"), ),
}}
RETURN_TYPES = ("FACERESTORE_MODEL",)
FUNCTION = "load_model"
CATEGORY = "facerestore_cf"
# def load_model(self, model_name):
# model_path = folder_paths.get_full_path("facerestore_models", model_name)
# sd = comfy.utils.load_torch_file(model_path, safe_load=True)
# out = model_loading.load_state_dict(sd).eval()
# return (out, )
def load_model(self, model_name):
if "codeformer" in model_name.lower():
print(f'\tLoading CodeFormer: {model_name}')
model_path = folder_paths.get_full_path("facerestore_models", model_name)
device = model_management.get_torch_device()
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
checkpoint = torch.load(model_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
out = codeformer_net.eval()
return (out, )
else:
model_path = folder_paths.get_full_path("facerestore_models", model_name)
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
out = model_loading.load_state_dict(sd).eval()
return (out, )
NODE_CLASS_MAPPINGS = {
"FaceRestoreCFWithModel": FaceRestoreCFWithModel,
"CropFace": CropFace,
"FaceRestoreModelLoader": FaceRestoreModelLoader,
}