Skip to content

An optimization model to select parameters for clustering algorithms

License

Notifications You must be signed in to change notification settings

marcosspalenza/clustering_optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Clustering Optimization

An optimization method for clustering hyperparameters selection using internal validity indexes.

Requirements:

Docker Container Ubuntu 18.04

Container

Create via Dockerfile:

docker build -t clustering_opt .

Clone via DockerHub:

docker pull marcosspalenza/clustering_opt

Usage

Requires input and output directories volumes as following.

docker run -v IN_DIR:/data/input/ -v OUT_DIR:/data/output/ clustering_opt:latest main_clustering.py DATASET

Replace IN_DIR and OUT_DIR with your data path and DATASET with your database name.

Also, the help options provide detailed descriptions:

docker run clustering_opt:latest main_clustering.py --help

Reference

Spalenza, M. A., Pirovani, J. P. C., and de Oliveira, E. Structures Discovering for Optimizing External Clustering Validation Metrics. In Proceedings of the 19th International Conference on Intelligent Systems Designand Applications, volume 19 ofISDA 2019, pages 150–161, Auburn (WA),USA. Springer International Publishing.

About

An optimization model to select parameters for clustering algorithms

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published