-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
232 lines (185 loc) · 9.22 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import print_function
import numpy as np
import argparse
import torch
import os
import pandas as pd
from utils.utils import *
#, save_splits
from datasets.dataset_mtl import Generic_MIL_MTL_Dataset
#, save_splits
from utils.eval_utils_mtl import compute_features, eval_ as eval_mtl
from utils.eval_utils_mtl_ms import compute_features, eval_ as eval_mtl_ms
# Training settings
parser = argparse.ArgumentParser(description='MANTA Evaluation Script')
parser.add_argument('--data_root_dir', type=str, default='',
help='data directory')
parser.add_argument('--results_dir', type=str, default='./results',
help='relative path to results folder, i.e. '+
'the directory containing models_exp_code relative to project root (default: ./results)')
parser.add_argument('--save_exp_code', type=str, default=None,
help='experiment code to save eval results')
parser.add_argument('--models_exp_code', type=str, default=None,
help='experiment code to load trained models (directory under results_dir containing model checkpoints')
parser.add_argument('--splits_dir', type=str, default=None,
help='splits directory, if using custom splits other than what matches the task (default: None)')
parser.add_argument('--model_size', type=str, choices=['small', 'big'], default='small',
help='size of model (default: small)')
parser.add_argument('--model_type', type=str, choices=['attention_mil'], default='attention_mil',
help='type of model (default: attention_mil)')
parser.add_argument('--drop_out', action='store_true', default=False,
help='whether model uses dropout')
parser.add_argument('--calc_features', action='store_true', default=False,
help='calculate features for pca/tsne')
parser.add_argument('--k', type=int, default=1, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--fold', type=int, default=-1, help='single fold to evaluate')
parser.add_argument('--micro_average', action='store_true', default=False,
help='use micro_average instead of macro_avearge for multiclass AUC')
parser.add_argument('--mtl', action='store_true', default=True, help='flag to enable multi-task problem')
parser.add_argument('--patient_level', action='store_true', default=False, help='To enable computing scores at the patient-level. I.e. all patients slides are treated as a single bag with a single label')
parser.add_argument('--stain_level', action='store_true', default=False)
parser.add_argument('--fusion', type=str, default='tensor')
parser.add_argument('--split', type=str, choices=['train', 'val', 'test', 'all'], default='test')
parser.add_argument('--task', type=str,
choices=['kidney-mtl'])
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoding_size = 768
args.save_dir = os.path.join('./eval_results', 'EVAL_' + str(args.save_exp_code))
args.models_dir = os.path.join(args.results_dir, str(args.models_exp_code))
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(os.path.join(args.save_dir, 'attention_scores'), exist_ok=True)
if args.splits_dir is None:
args.splits_dir = args.models_dir
assert os.path.isdir(args.models_dir)
assert os.path.isdir(args.splits_dir)
settings = {'task': args.task,
'split': args.split,
'save_dir': args.save_dir,
'models_dir': args.models_dir,
'model_type': args.model_type,
'drop_out': args.drop_out,
'model_size': args.model_size,
'micro_average': args.micro_average}
with open(args.save_dir + '/eval_experiment_{}.txt'.format(args.save_exp_code), 'w') as f:
print(settings, file=f)
f.close()
print(settings)
if args.task == 'kidney-mtl':
args.n_classes=[2,2,3]
dataset = Generic_MIL_MTL_Dataset(csv_path = 'dataset_csv/KidneySimpleLabels_edited_all_slides.csv',
data_dir= os.path.join(args.data_root_dir, 'kidney-features'),
shuffle = False,
print_info = True,
label_dicts = [{'no_cell':0, 'cell':1},
{'no_amr':0, 'amr':1},
{'mild_ifta':0, 'moderate_ifta':1, 'advanced_ifta':2}],
label_cols=['label_cell','label_amr','label_ifta'],
patient_strat=False,
ignore=[],
patient_level = args.patient_level,
stain_level = args.stain_level,
fusion = args.fusion)
elif os.path.isdir(args.task):
print('reading directory for fast inference')
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
if args.fold == -1:
folds = range(start, end)
else:
folds = range(args.fold, args.fold+1)
ckpt_paths = [os.path.join(args.models_dir, 's_{}_checkpoint.pt'.format(fold)) for fold in folds]
datasets_id = {'train': 0, 'val': 1, 'test': 2, 'all': -1}
def main_mtl(args):
all_task1_auc = []
all_task1_acc = []
all_task2_auc = []
all_task2_acc = []
all_task3_auc = []
all_task3_acc = []
results_dict_all = {}
for ckpt_idx in range(len(ckpt_paths)):
if datasets_id[args.split] < 0:
split_dataset = dataset
else:
csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx])
datasets = dataset.return_splits(from_id=False, csv_path=csv_path)
split_dataset = datasets[datasets_id[args.split]]
model, results_dict = eval_mtl(split_dataset, args, ckpt_paths[ckpt_idx])
results_dict_all[ckpt_idx] = results_dict
all_task1_auc.append(results_dict['auc_task1'])
all_task1_acc.append(1-results_dict['test_error_task1'])
all_task2_auc.append(results_dict['auc_task2'])
all_task2_acc.append(1-results_dict['test_error_task2'])
all_task3_auc.append(results_dict['auc_task3'])
all_task3_acc.append(1-results_dict['test_error_task3'])
df = results_dict['df']
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False)
if args.calc_features:
compute_features(split_dataset, args, ckpt_paths[ckpt_idx], args.save_dir, model=model)
df_dict = {'folds': folds,
'task1_test_auc': all_task1_auc, 'task1_test_acc': all_task1_acc,
'task2_test_auc': all_task2_auc, 'task2_test_acc': all_task2_acc,
'task3_test_auc': all_task3_auc, 'task3_test_acc': all_task3_acc}
final_df = pd.DataFrame(df_dict)
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1])
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.save_dir, save_name))
def main_mtl_ms(args):
all_task1_auc = []
all_task1_acc = []
all_task2_auc = []
all_task2_acc = []
all_task3_auc = []
all_task3_acc = []
results_dict_all = {}
for ckpt_idx in range(len(ckpt_paths)):
if datasets_id[args.split] < 0:
split_dataset = dataset
else:
csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx])
datasets = dataset.return_splits(from_id=False, csv_path=csv_path)
split_dataset = datasets[datasets_id[args.split]]
model, results_dict = eval_mtl_ms(split_dataset, args, ckpt_paths[ckpt_idx])
results_dict_all[ckpt_idx] = results_dict
all_task1_auc.append(results_dict['auc_task1'])
all_task1_acc.append(1-results_dict['test_error_task1'])
all_task2_auc.append(results_dict['auc_task2'])
all_task2_acc.append(1-results_dict['test_error_task2'])
all_task3_auc.append(results_dict['auc_task3'])
all_task3_acc.append(1-results_dict['test_error_task3'])
df = results_dict['df']
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False)
if args.calc_features:
compute_features(split_dataset, args, ckpt_paths[ckpt_idx], args.save_dir, model=model)
df_dict = {'folds': folds,
'task1_test_auc': all_task1_auc, 'task1_test_acc': all_task1_acc,
'task2_test_auc': all_task2_auc, 'task2_test_acc': all_task2_acc,
'task3_test_auc': all_task3_auc, 'task3_test_acc': all_task3_acc}
import pickle
with open(os.path.join(args.save_dir, 'results_dict.pkl'), 'wb') as out:
pickle.dump(results_dict_all, out)
final_df = pd.DataFrame(df_dict)
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1])
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.save_dir, save_name))
import pickle
if __name__ == "__main__":
if args.stain_level:
main_mtl_ms(args)
elif args.mtl:
main_mtl(args)
print("finished!")
print("end script")