-
Notifications
You must be signed in to change notification settings - Fork 3
/
optimizer.py
611 lines (548 loc) · 27.8 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# =====================================
# @Time : 2020/9/1
# @Author : Yang Guan (Tsinghua Univ.)
# @FileName: optimizer.py
# =====================================
import logging
import os
import queue
import random
import threading
import ray
import tensorflow as tf
import numpy as np
from utils.misc import judge_is_nan, TimerStat
from utils.misc import random_choice_with_index
from utils.task_pool import TaskPool
from queue import Empty
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
WORKER_DEPTH = 2
BUFFER_DEPTH = 4
LEARNER_QUEUE_MAX_SIZE = 128
class UpdateThread(threading.Thread):
"""Background thread that updates the local model from gradient list.
"""
def __init__(self, workers, evaluator, args, optimizer_stats):
threading.Thread.__init__(self)
self.args = args
self.workers = workers
self.local_worker = workers['local_worker']
self.evaluator = evaluator
self.optimizer_stats = optimizer_stats
self.inqueue = queue.Queue(maxsize=self.args.grads_queue_size)
self.stopped = False
self.log_dir = self.args.log_dir
self.model_dir = self.args.model_dir
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
self.iteration = 0
self.update_timer = TimerStat()
self.grad_queue_get_timer = TimerStat()
self.grad_apply_timer = TimerStat()
self.grad_reuse = 0
self.grad = None
self.learner_stats = None
self.writer = tf.summary.create_file_writer(self.log_dir + '/optimizer')
self.ascent = 0
def run(self):
while not self.stopped:
with self.update_timer:
self.step()
self.update_timer.push_units_processed(1)
def step(self):
self.optimizer_stats.update(dict(update_queue_size=self.inqueue.qsize(),
update_time=self.update_timer.mean,
update_throughput=self.update_timer.mean_throughput,
grad_queue_get_time=self.grad_queue_get_timer.mean,
grad_apply_timer=self.grad_apply_timer.mean,
grad_reuse=self.grad_reuse
))
# fetch grad
with self.grad_queue_get_timer:
try:
block = True if self.grad is None else False
self.grad, self.learner_stats = self.inqueue.get(block=block)
self.grad_reuse = 0
except Empty:
if self.grad_reuse < self.args.grads_max_reuse:
self.grad_reuse += 1
else:
self.grad, self.learner_stats = self.inqueue.get(timeout=30)
self.grad_reuse = 0
# apply grad
with self.grad_apply_timer:
# try:
# judge_is_nan(self.grad)
# except ValueError:
# self.grad = [tf.zeros_like(grad) for grad in self.grad]
# logger.info('Grad is nan!, zero it')
qc_grad, lam_grad = self.local_worker.apply_gradients(self.iteration, self.grad, ascent=True)
ascent = self.ascent
if ascent:
# print('apply ascent cstr')
self.local_worker.apply_ascent_gradients(self.iteration, qc_grad, lam_grad)
# else:
# print('apply uncstr')
# self.local_worker.apply_gradients(self.iteration, self.grad, ascent=False)
# log
if self.iteration % self.args.log_interval == 0:
logger.info('updating {} in total'.format(self.iteration))
logger.info('sampling {} in total'.format(self.optimizer_stats['num_sampled_steps']))
with self.writer.as_default():
for key, val in self.learner_stats.items():
if not isinstance(val, list):
if not isinstance(val, np.ndarray):
tf.summary.scalar('optimizer/learner_stats/scalar/{}'.format(key), val, step=self.iteration)
else:
tf.summary.histogram('optimizer/learner_stats/distribution/{}'.format(key), val, step=self.iteration)
else:
assert isinstance(val, list)
for i, v in enumerate(val):
if not isinstance(val, np.ndarray):
tf.summary.scalar('optimizer/learner_stats/list/{}/{}'.format(key, i), v, step=self.iteration)
else:
tf.summary.histogram('optimizer/learner_stats/list/{}/{}'.format(key, i), v, step=self.iteration)
for key, val in self.optimizer_stats.items():
tf.summary.scalar('optimizer/{}'.format(key), val, step=self.iteration)
self.writer.flush()
# evaluate
if self.iteration % self.args.eval_interval == 0:
self.evaluator.set_weights.remote(self.local_worker.get_weights())
if self.args.obs_ptype == 'normalize' or self.args.rew_ptype == 'normalize':
self.evaluator.set_ppc_params.remote(self.local_worker.get_ppc_params())
over_cost_lim = self.evaluator.run_evaluation.remote(self.iteration)
self.ascent += ray.get(over_cost_lim)
logger.info('ascent: {}'.format(self.ascent))
# save
if self.iteration % self.args.save_interval == 0:
self.local_worker.save_weights(self.model_dir, self.iteration)
self.workers['remote_workers'][0].save_ppc_params.remote(self.model_dir)
self.iteration += 1
class OffPolicyAsyncOptimizer(object):
def __init__(self, workers, learners, replay_buffers, evaluator, args):
"""Initialize an off-policy async optimizers.
Arguments:
workers (dict): {local worker, remote workers (list)>=0}
learners (list): list of remote learners, len >= 1
replay_buffers (list): list of replay buffers, len >= 1
"""
self.args = args
self.workers = workers
self.local_worker = self.workers['local_worker']
self.learners = learners
self.learner_queue = queue.Queue(LEARNER_QUEUE_MAX_SIZE)
self.replay_buffers = replay_buffers
self.evaluator = evaluator
self.num_sampled_steps = 0
self.num_sampled_costs = 0
self.iteration = 0
self.num_samples_dropped = 0
self.num_grads_dropped = 0
self.optimizer_steps = 0
self.timers = {k: TimerStat() for k in ["sampling_timer", "replay_timer",
"learning_timer"]}
self.stats = {}
self.update_thread = UpdateThread(self.workers, self.evaluator, self.args,
self.stats)
self.update_thread.start()
self.max_weight_sync_delay = self.args.max_weight_sync_delay
self.steps_since_update = {}
self.log_dir = self.args.log_dir
self.model_dir = self.args.model_dir
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
self.sample_tasks = TaskPool()
self._set_workers()
# fill buffer to replay starts
logger.info('start filling the replay')
while not all([l >= self.args.replay_starts for l in
ray.get([rb.__len__.remote() for rb in self.replay_buffers])]):
for worker, objID in list(self.sample_tasks.completed()):
sample_batch, count = ray.get(objID)
random.choice(self.replay_buffers).add_batch.remote(sample_batch)
self.num_sampled_steps += count
self.sample_tasks.add(worker, worker.sample_with_count.remote())
logger.info('end filling the replay')
self.replay_tasks = TaskPool()
self._set_buffers()
self.learn_tasks = TaskPool()
self._set_learners()
logger.info('Optimizer initialized')
def get_stats(self):
cost_rate = self.num_sampled_costs/self.num_sampled_steps
self.stats.update(dict(num_sampled_steps=self.num_sampled_steps,
num_sampled_costs=self.num_sampled_costs,
cost_rate=cost_rate,
iteration=self.iteration,
optimizer_steps=self.optimizer_steps,
num_samples_dropped=self.num_samples_dropped,
num_grads_dropped=self.num_grads_dropped,
learner_queue_size=self.learner_queue.qsize(),
sampling_time=self.timers['sampling_timer'].mean,
replay_time=self.timers["replay_timer"].mean,
learning_time=self.timers['learning_timer'].mean
)
)
return self.stats
def _set_workers(self):
weights = self.local_worker.get_weights()
for worker in self.workers['remote_workers']:
worker.set_weights.remote(weights)
self.steps_since_update[worker] = 0
for _ in range(WORKER_DEPTH):
self.sample_tasks.add(worker, worker.sample_with_count.remote())
def _set_buffers(self):
for rb in self.replay_buffers:
for _ in range(BUFFER_DEPTH):
self.replay_tasks.add(rb, rb.replay.remote())
def _set_learners(self):
weights = self.local_worker.get_weights()
ppc_params = self.workers['remote_workers'][0].get_ppc_params.remote()
for learner in self.learners:
learner.set_weights.remote(weights)
if self.args.obs_ptype == 'normalize' or \
self.args.rew_ptype == 'normalize':
learner.set_ppc_params.remote(ppc_params)
rb, _ = random_choice_with_index(self.replay_buffers)
samples = ray.get(rb.replay.remote())
self.learn_tasks.add(learner, learner.compute_gradient.remote(samples[:-1], rb, samples[-1],
self.local_worker.iteration))
def step(self):
assert self.update_thread.is_alive()
assert len(self.workers['remote_workers']) > 0
weights = None
ppc_params = None
# sampling
with self.timers['sampling_timer']:
for worker, objID in self.sample_tasks.completed():
sample_batch, count = ray.get(objID)
random.choice(self.replay_buffers).add_batch.remote(sample_batch)
self.num_sampled_steps += count
# self.num_sampled_costs += count_costs
self.steps_since_update[worker] += count
ppc_params = worker.get_ppc_params.remote()
if self.steps_since_update[worker] >= self.max_weight_sync_delay:
# judge_is_nan(self.local_worker.policy_with_value.policy.trainable_weights)
if weights is None:
weights = ray.put(self.local_worker.get_weights())
worker.set_weights.remote(weights)
self.steps_since_update[worker] = 0
self.sample_tasks.add(worker, worker.sample_with_count.remote())
# replay
with self.timers["replay_timer"]:
for rb, replay in self.replay_tasks.completed():
self.replay_tasks.add(rb, rb.replay.remote())
if self.learner_queue.full():
self.num_samples_dropped += 1
else:
samples = ray.get(replay)
self.learner_queue.put((rb, samples))
# learning
with self.timers['learning_timer']:
for learner, objID in self.learn_tasks.completed():
grads = ray.get(objID)
learner_stats = ray.get(learner.get_stats.remote())
if self.args.buffer_type == 'priority':
info_for_buffer = ray.get(learner.get_info_for_buffer.remote())
info_for_buffer['rb'].update_priorities.remote(info_for_buffer['indexes'],
info_for_buffer['td_error'])
rb, samples = self.learner_queue.get(block=False)
if ppc_params and \
(self.args.obs_ptype == 'normalize' or self.args.rew_ptype == 'normalize'):
learner.set_ppc_params.remote(ppc_params)
self.local_worker.set_ppc_params(ppc_params)
if weights is None:
weights = ray.put(self.local_worker.get_weights())
learner.set_weights.remote(weights)
self.learn_tasks.add(learner, learner.compute_gradient.remote(samples[:-1], rb, samples[-1],
self.local_worker.iteration))
if self.update_thread.inqueue.full():
self.num_grads_dropped += 1
self.update_thread.inqueue.put([grads, learner_stats])
self.iteration = self.update_thread.iteration
self.optimizer_steps += 1
self.get_stats()
def stop(self):
self.update_thread.stopped = True
class OffPolicyAsyncOptimizerWithCost(object):
def __init__(self, workers, learners, replay_buffers, evaluator, args):
"""Initialize an off-policy async optimizers.
Arguments:
workers (dict): {local worker, remote workers (list)>=0}
learners (list): list of remote learners, len >= 1
replay_buffers (list): list of replay buffers, len >= 1
"""
self.args = args
if isinstance(self.args.random_seed, int):
self.set_seed(self.args.random_seed)
self.workers = workers
self.local_worker = self.workers['local_worker']
self.learners = learners
self.learner_queue = queue.Queue(LEARNER_QUEUE_MAX_SIZE)
self.replay_buffers = replay_buffers
self.evaluator = evaluator
self.num_sampled_steps = 0
self.num_sampled_costs = 0
self.iteration = 0
self.num_samples_dropped = 0
self.num_grads_dropped = 0
self.optimizer_steps = 0
self.timers = {k: TimerStat() for k in ["sampling_timer", "replay_timer",
"learning_timer"]}
self.stats = {}
self.update_thread = UpdateThread(self.workers, self.evaluator, self.args,
self.stats)
self.update_thread.start()
self.max_weight_sync_delay = self.args.max_weight_sync_delay
self.steps_since_update = {}
self.log_dir = self.args.log_dir
self.model_dir = self.args.model_dir
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
self.sample_tasks = TaskPool()
self._set_workers()
# fill buffer to replay starts
logger.info('start filling the replay')
while not all([l >= self.args.replay_starts for l in
ray.get([rb.__len__.remote() for rb in self.replay_buffers])]):
for worker, objID in list(self.sample_tasks.completed()):
sample_batch, count, count_costs = ray.get(objID)
random.choice(self.replay_buffers).add_batch.remote(sample_batch)
self.num_sampled_steps += count
self.num_sampled_costs += count_costs
self.sample_tasks.add(worker, worker.random_sample_with_count.remote())
logger.info('end filling the replay')
self.replay_tasks = TaskPool()
self._set_buffers()
self.learn_tasks = TaskPool()
self._set_learners()
logger.info('Optimizer initialized')
def set_seed(self, seed):
tf.random.set_seed(seed)
random.seed(seed)
np.random.seed(seed)
def get_stats(self):
cost_rate = self.num_sampled_costs/self.num_sampled_steps
self.stats.update(dict(num_sampled_steps=self.num_sampled_steps,
num_sampled_costs=self.num_sampled_costs,
cost_rate=cost_rate,
iteration=self.iteration,
optimizer_steps=self.optimizer_steps,
num_samples_dropped=self.num_samples_dropped,
num_grads_dropped=self.num_grads_dropped,
learner_queue_size=self.learner_queue.qsize(),
sampling_time=self.timers['sampling_timer'].mean,
replay_time=self.timers["replay_timer"].mean,
learning_time=self.timers['learning_timer'].mean
)
)
return self.stats
def _set_workers(self):
weights = self.local_worker.get_weights()
for worker in self.workers['remote_workers']:
worker.set_weights.remote(weights)
self.steps_since_update[worker] = 0
for _ in range(WORKER_DEPTH):
self.sample_tasks.add(worker, worker.random_sample_with_count.remote())
def _set_buffers(self):
for rb in self.replay_buffers:
for _ in range(BUFFER_DEPTH):
self.replay_tasks.add(rb, rb.replay.remote())
def _set_learners(self):
weights = self.local_worker.get_weights()
ppc_params = self.workers['remote_workers'][0].get_ppc_params.remote()
for learner in self.learners:
learner.set_weights.remote(weights)
if self.args.obs_ptype == 'normalize' or \
self.args.rew_ptype == 'normalize':
learner.set_ppc_params.remote(ppc_params)
rb, _ = random_choice_with_index(self.replay_buffers)
samples = ray.get(rb.replay.remote())
self.learn_tasks.add(learner, learner.compute_gradient.remote(samples[:-1], rb, samples[-1],
self.local_worker.iteration))
def step(self):
assert self.update_thread.is_alive()
assert len(self.workers['remote_workers']) > 0
weights = None
ppc_params = None
# sampling
with self.timers['sampling_timer']:
for worker, objID in self.sample_tasks.completed():
sample_batch, count, count_costs = ray.get(objID)
random.choice(self.replay_buffers).add_batch.remote(sample_batch)
self.num_sampled_steps += count
self.num_sampled_costs += count_costs
self.steps_since_update[worker] += count
ppc_params = worker.get_ppc_params.remote()
if self.steps_since_update[worker] >= self.max_weight_sync_delay:
# judge_is_nan(self.local_worker.policy_with_value.policy.trainable_weights)
if weights is None:
weights = ray.put(self.local_worker.get_weights())
worker.set_weights.remote(weights)
self.steps_since_update[worker] = 0
self.sample_tasks.add(worker, worker.sample_with_count.remote())
# replay
with self.timers["replay_timer"]:
for rb, replay in self.replay_tasks.completed():
self.replay_tasks.add(rb, rb.replay.remote())
if self.learner_queue.full():
self.num_samples_dropped += 1
else:
samples = ray.get(replay)
self.learner_queue.put((rb, samples))
# learning
with self.timers['learning_timer']:
for learner, objID in self.learn_tasks.completed():
grads = ray.get(objID)
learner_stats = ray.get(learner.get_stats.remote())
if self.args.buffer_type == 'priority':
info_for_buffer = ray.get(learner.get_info_for_buffer.remote())
info_for_buffer['rb'].update_priorities.remote(info_for_buffer['indexes'],
info_for_buffer['td_error'])
if self.args.buffer_type == 'priority_cost':
info_for_buffer = ray.get(learner.get_info_for_buffer.remote())
info_for_buffer['rb'].update_priorities.remote(info_for_buffer['indexes'],
info_for_buffer['cost_td_error'])
rb, samples = self.learner_queue.get(block=False)
if ppc_params and \
(self.args.obs_ptype == 'normalize' or self.args.rew_ptype == 'normalize'):
learner.set_ppc_params.remote(ppc_params)
self.local_worker.set_ppc_params(ppc_params)
if weights is None:
weights = ray.put(self.local_worker.get_weights())
learner.set_weights.remote(weights)
if self.update_thread.ascent:
# logger.info('Start dual ascent')
self.learn_tasks.add(learner, learner.compute_gradient.remote(samples[:-1], rb, samples[-1],
self.local_worker.iteration, ascent=True))
else:
self.learn_tasks.add(learner, learner.compute_gradient.remote(samples[:-1], rb, samples[-1],
self.local_worker.iteration, ascent=False))
if self.update_thread.inqueue.full():
self.num_grads_dropped += 1
self.update_thread.inqueue.put([grads, learner_stats])
self.iteration = self.update_thread.iteration
self.optimizer_steps += 1
self.get_stats()
def stop(self):
self.update_thread.stopped = True
class SingleProcessOffPolicyOptimizer(object):
def __init__(self, worker, learner, replay_buffer, evaluator, args):
self.args = args
self.worker = worker
self.learner = learner
self.replay_buffer = replay_buffer
self.evaluator = evaluator
self.num_sampled_steps = 0
self.num_sampled_costs = 0
self.iteration = 0
self.timers = {k: TimerStat() for k in ["sampling_timer", "replay_timer", "learning_timer", "grad_apply_timer"]}
self.stats = {}
self.log_dir = self.args.log_dir
self.model_dir = self.args.model_dir
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
self.args.log_interval = 10
self.args.eval_interval = 3000
self.args.save_interval = 3000
# fill buffer to replay starts
logger.info('start filling the replay')
while not len(self.replay_buffer) >= self.args.replay_starts:
sample_batch, count, costs_count = self.worker.sample_with_count()
self.num_sampled_steps += count
self.num_sampled_costs += costs_count
self.replay_buffer.add_batch(sample_batch)
logger.info('end filling the replay')
self.writer = tf.summary.create_file_writer(self.log_dir + '/optimizer')
logger.info('Optimizer initialized')
self.get_stats()
def get_stats(self):
cost_rate = self.num_sampled_costs/self.num_sampled_steps
self.stats.update(dict(num_sampled_steps=self.num_sampled_steps,
num_sampled_costs=self.num_sampled_costs,
cost_rate=cost_rate,
iteration=self.iteration,
sampling_time=self.timers['sampling_timer'].mean,
replay_time=self.timers["replay_timer"].mean,
learning_time=self.timers['learning_timer'].mean,
grad_apply_timer=self.timers['grad_apply_timer'].mean
)
)
return self.stats
def step(self):
# sampling
sampling_interval = 10
if self.iteration % sampling_interval == 0:
with self.timers['sampling_timer']:
sample_batch, count, count_costs = self.worker.sample_with_count()
self.num_sampled_steps += count
self.num_sampled_costs += count_costs
self.replay_buffer.add_batch(sample_batch)
# replay
with self.timers["replay_timer"]:
samples = self.replay_buffer.replay()
# learning
with self.timers['learning_timer']:
self.learner.set_weights(self.worker.get_weights())
if self.args.obs_ptype == 'normalize' or \
self.args.rew_ptype == 'normalize':
self.learner.set_ppc_params(self.worker.get_ppc_params())
grads = self.learner.compute_gradient(samples[:-1], self.replay_buffer, samples[-1], self.iteration)
learner_stats = self.learner.get_stats()
if self.args.buffer_type == 'priority':
info_for_buffer = self.learner.get_info_for_buffer()
info_for_buffer['rb'].update_priorities(info_for_buffer['indexes'], info_for_buffer['td_error'])
if self.args.buffer_type == 'priority_cost':
info_for_buffer = self.learner.get_info_for_buffer()
info_for_buffer['rb'].update_priorities(info_for_buffer['indexes'],
info_for_buffer[
'cost_td_error'])
# apply grad
with self.timers['grad_apply_timer']:
try:
judge_is_nan(grads)
except ValueError:
grads = [tf.zeros_like(grad) for grad in grads]
logger.info('Grad is nan!, zero it')
self.worker.apply_gradients(self.iteration, grads)
# log
if self.iteration % self.args.log_interval == 0:
logger.info('updating {} in total'.format(self.iteration))
logger.info('sampling {} in total'.format(self.stats['num_sampled_steps']))
with self.writer.as_default():
for key, val in learner_stats.items():
if not isinstance(val, list):
tf.summary.scalar('optimizer/learner_stats/scalar/{}'.format(key), val,
step=self.iteration)
else:
assert isinstance(val, list)
for i, v in enumerate(val):
tf.summary.scalar('optimizer/learner_stats/list/{}/{}'.format(key, i), v,
step=self.iteration)
for key, val in self.stats.items():
tf.summary.scalar('optimizer/{}'.format(key), val, step=self.iteration)
self.writer.flush()
# evaluate
if self.iteration % self.args.eval_interval == 0 and self.evaluator is not None:
self.evaluator.set_weights(self.worker.get_weights())
self.evaluator.set_ppc_params(self.worker.get_ppc_params())
self.evaluator.run_evaluation(self.iteration)
# save
if self.iteration % self.args.save_interval == 0:
self.worker.save_weights(self.model_dir, self.iteration)
self.worker.save_ppc_params(self.model_dir)
self.get_stats()
self.iteration += 1
def stop(self):
pass