-
Notifications
You must be signed in to change notification settings - Fork 3
/
mmaction2_stats.py
259 lines (203 loc) · 7.48 KB
/
mmaction2_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import glob
import os.path as osp
import pickle
from dataclasses import dataclass
from multiprocessing import Pool
from typing import Optional
import pandas as pd
import pdfplumber
import tqdm
import wget
from pdfminer.pdfparser import PDFSyntaxError
@dataclass
class paper_info:
title: str
conference: str
year: int
authors: str
abstract: Optional[str] = None
pdf_path: Optional[str] = None
pdf_url: Optional[str] = None
code_url: Optional[str] = None
def load_paper_info(index_path: str = 'index'):
"""Load paper information from csv files which can be downloaded from
https://aicarrier.feishu.cn/sheets/shtcnGhSBiEUVqnHQBPtshy6Tse and should
be organized as:
index
├── 顶会论文数据库-AAAI.csv
├── 顶会论文数据库-CVPR.csv
├── 顶会论文数据库-ECCV.csv
...
"""
papers = []
for fn in glob.glob(osp.join(index_path, '*.csv')):
print(f'load paper index from {fn}')
df = pd.read_csv(fn)
for _, item in tqdm.tqdm(df.iterrows(), total=len(df) - 1):
paper = paper_info(title=item['title'],
conference=item['conference'],
year=item['year'],
authors=item['authors'],
abstract=item['abstract'])
if isinstance(item['pdf_url'], str):
paper.pdf_url = item['pdf_url']
if isinstance(item['code_url'], str):
paper.code_url = item['code_url']
paper.pdf_path = osp.join('data',
f'{paper.conference}{paper.year}',
f'{paper.title}.pdf')
papers.append(paper)
print(f'load {len(papers)} papers in total.')
return papers
def _download(args):
idx, total, paper = args
url = paper.pdf_url
path = paper.pdf_path
try:
print(f'{idx}/{total}')
wget.download(url, path, bar=None)
return None
except: # noqa
return paper
def download_missing_pdf(papers):
missing_list = [
paper for paper in papers if not osp.isfile(paper.pdf_path)
]
print(f'found {len(missing_list)} missing papers.')
with Pool() as p:
total = len(missing_list)
tasks = [(i, total, paper) for i, paper in enumerate(missing_list)]
failed_list = [r for r in p.map(_download, tasks) if r is not None]
if failed_list:
print(f'failed to download {len(failed_list)} papers.')
with open('failed_list.pkl', 'wb') as f:
pickle.dump(failed_list, f)
def search_kwgroups_in_pdf(pdf_path: str,
keyword_groups: dict[str, list[str]],
case_sensitive=False) -> list[int]:
"""Search a keyword groups in a pdf file. One keyword group is considered
hit if at least one keyword in this group is found in the pdf.
Args:
pdf_path (str): path to the pdf file
keyword_groups (dict[str, list[str]]): A list of keyword groups. Each
group is a list of keywords
case_sensitive (bool): Whether consider letter case
Returns:
dict[str, bool]: The indicators of each keypoint group.
"""
if not case_sensitive:
keyword_groups = {
k: [kw.lower() for kw in group]
for k, group in keyword_groups.items()
}
result = {k: False for k in keyword_groups.keys()}
if osp.isfile(pdf_path):
try:
with pdfplumber.open(pdf_path) as pdf:
for _, page in enumerate(pdf.pages, 1):
if all(result.values()):
break
text = page.extract_text()
if not case_sensitive:
text = text.lower()
for name, group in keyword_groups.items():
if result[name]:
continue
else:
for kw in group:
if kw in text:
result[name] = True
break
except PDFSyntaxError:
print(f'fail to parse: {pdf_path}')
return result
def _search_in_pdf(args):
idx, total, keyword_groups, pdf_path = args
print(f'{idx}/{total}')
return search_kwgroups_in_pdf(pdf_path, keyword_groups)
def main():
# load paper information
papers = load_paper_info()
download_missing_pdf(papers)
# search in title/abstract
def _valid(paper):
strong_pos_kws = [
'action recognition',
'action localization',
'video understanding',
'video recognition',
]
pos_kws = [
'action',
'spatio-temporal',
'spatial-temporal',
'spatiotemporal',
]
neg_kws = [
'diffraction', 'action prediction', 'interaction',
'object detection', 'object tracking', 'distraction', 'extraction',
'action assessment', 'motion prediction', 'reinforcement learning',
'segmentation', 'point cloud', 'abstraction',
'action unit recognition'
]
text = paper.title.lower()
# if isinstance(paper.abstract, str):
# text = text + ' ' + paper.abstract.lower()
for kw in strong_pos_kws:
if kw in text:
return True
for kw in neg_kws:
if kw in text:
return False
for kw in pos_kws:
if kw in text:
return True
return False
papers = list(filter(_valid, papers))
# search in PDF
keyword_groups = {
'_pos0':
['kinetics', 'something-something', 'ntu', 'ucf101', 'activitynet'],
'_neg0': [],
'mmaction': ['mmaction'],
'mmaction2': ['mmaction2', 'mmaction'],
'openmmlab': ['openmmlab', 'open mmlab', 'open-mmlab'],
'slowfast': ['slowfast'],
'pyslowfast': ['pyslowfast', 'facebookresearch/slowfast'],
'torchvideo': ['torchvideo', 'torch video'],
'paddlevideo': ['paddlevideo', 'paddle video'],
}
total = len(papers)
tasks = [(i, total, keyword_groups, paper.pdf_path)
for i, paper in enumerate(papers)]
with Pool() as p:
search_results = p.map(_search_in_pdf, tasks)
with open('mmaction2_search_results.pkl', 'wb') as f:
pickle.dump(search_results, f)
matched = []
for paper, result in zip(papers, search_results):
pos_keys = [k for k in result.keys() if k.startswith('_pos')]
neg_keys = [k for k in result.keys() if k.startswith('_neg')]
relevant = False
for key in pos_keys:
relevant |= result.pop(key)
for key in neg_keys:
relevant &= (~result.pop(key))
result['relevant'] = relevant
result = {k: int(v) for k, v in result.items()}
# if any(result.values()):
# matched.append((paper, result))
matched.append((paper, result))
for name in matched[0][1].keys():
count = sum(result[name] for _, result in matched)
print(name, count)
# save to csv
paper_dicts = []
for paper, result in matched:
d = paper.__dict__.copy()
d.update(result)
paper_dicts.append(d)
df = pd.DataFrame.from_dict(paper_dicts)
df.to_csv('mmaction2_stats.csv', index=True, header=True)
if __name__ == '__main__':
main()