Skip to content

lukk47/Tensorflow-data-loader

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

Tensorflow-data-loader

Reading data into tensorflow using tf.data function with configurations inclduing normalization, batch, epoch and three data augmentaion methods.

Example of usage and testing

import matplotlib.pyplot as plt
import tensorflow as tf
import data_loader

data_list = '/list/example.txt'
plt.ioff()

#Parse the images and masks, and return the data in batches, augmented optionally
data = data_loader.data_batch(data_list, augment=['flip_ud','flip_lr','rot90'], 
                                        normalize=True,batch_size=20, epoch = None)
#Get the image and mask op from the returned dataset
image_tensor, mask_tensor = data

with tf.Session() as sess:
    # Evaluate the tensors
    for i in range(1):
        image, mask = sess.run([image_tensor, mask_tensor])

        # Confirming everything is working by visualizing
        plt.figure('augmented image')
        plt.imshow(image[0, :, :, :])
        plt.figure('augmented mask')
        plt.imshow(mask[0, :, :,:])
        plt.show()
    # Do whatever you want now, like creating a feed dict and train your models

Reference

HasnainRaz/Tensorflow-input-pipeline

Releases

No releases published

Packages

No packages published

Languages