-
Notifications
You must be signed in to change notification settings - Fork 3
/
rgbd_c3d.py
162 lines (134 loc) · 5.76 KB
/
rgbd_c3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from torch.autograd.variable import Variable
import torch.autograd
import torch.nn as nn
import math
import torch
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, feature_name, dropout):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3),
bias=False)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 64, layers[0], force_downsample=True)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.dropout = dropout
self.dropout1 = nn.Dropout3d(dropout)
self.dropout2 = nn.Dropout3d(dropout)
self.dropout3 = nn.Dropout3d(dropout)
self.dropout4 = nn.Dropout3d(dropout)
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
self.feature_name = feature_name
def _make_layer(self, block, planes, blocks, stride=1, force_downsample=False):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or force_downsample:
downsample = nn.Sequential(
nn.Conv3d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm3d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
if self.feature_name == 'layer2':
return x
x = self.layer3(x)
x = self.layer4(x)
x = self.dropout4(x)
#x = self.avgpool(x)
return x
def resnet18_c3d(load_pretrained=False, feature_name='layer4', dropout=0.5, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
assert feature_name == 'layer2' or feature_name == 'layer4'
model = ResNet(BasicBlock, [2, 2, 2, 2], feature_name=feature_name, dropout=dropout, **kwargs)
if load_pretrained:
model.load_state_dict(torch.load('./model/resnet18_c3d.model'))
return model
class RGBDC3D(nn.Module):
def __init__(self, cnn_name='resnet18_c3d', feature_name='layer4', cnn_dropout=0.5,
modality='rgb',
seq_len=8, n_class=249, gpu_id=None):
super(RGBDC3D, self).__init__()
self.cnn_name = cnn_name
assert cnn_name in ['resnet18_c3d']
self.modality = modality
self.seq_len = seq_len
self.n_class = n_class
self.feature_name = feature_name
self.gpu_id = gpu_id
config = locals()
config['self'] = self.__class__.__name__
self.config = config
if cnn_name == 'resnet18_c3d':
self.cnn = resnet18_c3d(load_pretrained=True, feature_name=feature_name, dropout=cnn_dropout)
fc_dim = 512
else:
raise RuntimeError('cnn_name wrong!')
kernel_size1 = (4, 1, 1)
kernel_size2 = (1, 7, 7)
self.classifier_conv3d1 = nn.Sequential(nn.Dropout3d(0.), nn.AvgPool3d((1, 7, 7)),
nn.Conv3d(512, self.n_class, kernel_size=kernel_size1))
self.classifier_conv3d2 = nn.Sequential(nn.Dropout3d(0.), nn.AvgPool3d((4, 1, 1)),
nn.Conv3d(512, n_class, kernel_size=kernel_size2))
def forward(self, inps):
imgs = inps[0]
imgs = imgs.transpose(1, 2)
imgs = Variable(imgs, volatile=not self.training)
feats = nn.parallel.data_parallel(self.cnn, imgs, self.gpu_id)
ys1 = nn.parallel.data_parallel(self.classifier_conv3d1, feats, self.gpu_id)
ys2 = nn.parallel.data_parallel(self.classifier_conv3d2, feats, self.gpu_id)
ys = ys1 + ys2
if torch.__version__ == '0.1.12_2':
ys = ys.mean(2).mean(3).mean(4).view(-1, self.n_class)
else:
ys = ys.mean(2, True).mean(3, True).mean(4, True).view(-1, self.n_class)
output = (ys, )
return output