-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
310 lines (238 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import copy
import json
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from loguru import logger
from model import Model
from dataloader import DataLoader
from function import regression, zscore
global_step = -1
def train_epoch(epoch, model, optimizer, train_loader, writer, args):
global global_step
model.train()
train_loader.train()
optimizer.zero_grad() # always reset grad
tmp_r2 = 0
tmp_norm = 0
total_r2 = 0
total_norm = 0
prev_pred = None
prev_index = None
for step, (feature, ret, cap, index) in enumerate(tqdm(train_loader)):
global_step += 1
if len(ret.shape) == 2 and args.next_ret_only:
ret = ret[:, 0]
pred = model(feature)
# smoothing
cur_index = index.get_level_values(0)
if prev_pred is not None:
shared_index = prev_index.intersection(cur_index)
cur_mask = cur_index.isin(shared_index, level=0)
prev_mask = prev_index.isin(shared_index, level=0)
pred[cur_mask] = prev_pred[prev_mask] * args.rho + pred[cur_mask] * (1 - args.rho)
prev_pred = pred.detach()
prev_index = cur_index
_, _, r2, norm = regression(pred, ret, cap)
loss = - r2 + args.lamb * norm
loss /= args.update_freq
loss.backward()
tmp_r2 += r2.item()
tmp_norm += norm.item()
if (step + 1) % args.update_freq == 0:
optimizer.step()
optimizer.zero_grad()
total_r2 += tmp_r2
total_norm += tmp_norm
if writer is not None:
tmp_r2 /= args.update_freq
tmp_norm /= args.update_freq
writer.add_scalar('train/r2', tmp_r2, global_step // args.update_freq)
writer.add_scalar('train/norm', tmp_norm, global_step // args.update_freq)
writer.add_scalar('train/loss', - tmp_r2 + args.lamb * tmp_norm, global_step // args.update_freq)
tmp_r2 = 0
tmp_norm = 0
torch.cuda.empty_cache() # docker memory leak
total_r2 /= len(train_loader)
total_norm /= len(train_loader)
return total_r2, total_norm, - total_r2 + args.lamb * total_norm
def test_epoch(epoch, model, test_loader, writer, args, prefix='test', save_pred=False):
model.eval()
test_loader.eval()
total_r2 = 0
total_norm = 0
preds = []
prev_pred = None
prev_index = None
for feature, ret, cap, index in tqdm(test_loader):
if len(ret.shape) == 2:
ret = ret[:, 0]
with torch.no_grad():
pred = model(feature)
# smoothing
cur_index = index.get_level_values(0)
if prev_pred is not None:
shared_index = prev_index.intersection(cur_index)
cur_mask = cur_index.isin(shared_index, level=0)
prev_mask = prev_index.isin(shared_index, level=0)
pred[cur_mask] = prev_pred[prev_mask] * args.rho + pred[cur_mask] * (1 - args.rho)
prev_pred = pred
prev_index = cur_index
_, _, r2, norm = regression(pred, ret, cap)
total_r2 += r2.item()
total_norm += norm.item()
if save_pred:
pred = zscore(pred, cap, mask_w=True) # cap has nan
preds.append(pd.DataFrame(pred.cpu().numpy(), index=index))
torch.cuda.empty_cache() # docker memory leak
total_r2 /= len(test_loader)
total_norm /= len(test_loader)
total_loss = - total_r2 + args.lamb * total_norm
if writer is not None:
writer.add_scalar(prefix+'/r2', total_r2, epoch)
writer.add_scalar(prefix+'/norm', total_norm, epoch)
writer.add_scalar(prefix+'/loss', total_loss, epoch)
if len(preds):
preds = pd.concat(preds, axis=0)
return total_r2, total_norm, total_loss, preds
def create_loaders(args):
logger.info('load data')
df_feature = pd.read_pickle(args.datadir + '/' + args.feature + '.pkl')
df_ret = pd.read_pickle(args.datadir + '/' + args.ret + '.pkl')
try:
df_cap = pd.read_pickle(args.datadir + '/' +'cap.pkl')
except:
logger.warning('market cap is not found, will use identity weight.')
df_cap = pd.Series(1, index=df_ret.index, dtype='float32')
assert len(df_feature) == len(df_ret) == len(df_cap)
logger.info('init loader')
slc = slice(args.train_start_date, args.train_end_date)
train_loader = DataLoader(df_feature.loc[slc], df_ret.loc[slc], df_cap.loc[slc],
pin_memory=args.pin_memory, device=args.device)
slc = slice(args.valid_start_date, args.valid_end_date)
valid_loader = DataLoader(df_feature.loc[slc], df_ret.loc[slc], df_cap.loc[slc],
pin_memory=args.pin_memory, device=args.device)
slc = slice(args.test_start_date, args.test_end_date)
test_loader = DataLoader(df_feature.loc[slc], df_ret.loc[slc], df_cap.loc[slc],
pin_memory=args.pin_memory, device=args.device)
return train_loader, valid_loader, test_loader
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.makedirs(args.outdir, exist_ok=True)
if not args.overwrite and os.path.exists(args.outdir+'/'+'info.json'):
print('already finished, exit.')
return
writer = SummaryWriter(log_dir=args.outdir) if args.n_epochs > 0 else None
logger.info('create model...')
model = Model(**vars(args)).to(args.device)
if args.init_state:
logger.info('load model from init state')
model.load_state_dict(torch.load(args.init_state, map_location='cpu'))
optimizer = optim.Adam(model.parameters(), lr=args.lr)
logger.info('# params: %d' % sum([p.numel() for p in model.parameters()]))
logger.info('create loaders...')
train_loader, valid_loader, test_loader = create_loaders(args)
best_score = -1
best_epoch = 0
stop_round = 0
best_param = copy.deepcopy(model.state_dict())
for epoch in range(args.n_epochs):
logger.info('Epoch: %d' % epoch)
logger.info('training...')
train_r2, train_norm, train_loss = train_epoch(epoch, model, optimizer, train_loader, writer, args)
logger.info('evaluating...')
valid_r2, valid_norm, valid_loss, _ = test_epoch(epoch, model, valid_loader, writer, args, prefix='valid')
test_r2, test_norm, test_loss, _ = test_epoch(epoch, model, test_loader, writer, args, prefix='test')
logger.info('r2 - train %.6f, valid %.6f, test %.6f'%(train_r2, valid_r2, test_r2))
logger.info('norm - train %.6f, valid %.6f, test %.6f'%(train_norm, valid_norm, test_norm))
if valid_r2 > best_score:
logger.info(f'\tvalid r2 update from {best_score:.6f} to {valid_r2:.6f}')
best_score = valid_r2
stop_round = 0
best_epoch = epoch
best_param = copy.deepcopy(model.state_dict())
torch.save(best_param, args.outdir+'/model.bin')
else:
stop_round += 1
if stop_round >= args.early_stop:
logger.info('early stop')
break
logger.info(f'best r2: {best_score:.6f} @ {best_epoch}')
model.load_state_dict(best_param)
logger.info('inference...')
pred = []
for name in ['train', 'valid', 'test']:
pred.append(test_epoch(-1, model, eval(name+'_loader'), None, args, prefix=name, save_pred=True)[-1])
pd.concat(pred, axis=0).to_pickle(args.outdir+'/pred.pkl')
logger.info('save info...')
info = dict(
config=vars(args),
best_epoch=best_epoch,
best_score=best_score,
)
default = lambda x: str(x)[:10] if isinstance(x, pd.Timestamp) else x
with open(args.outdir+'/info.json', 'w') as f:
json.dump(info, f, default=default, indent=4)
logger.info('finished.')
class ParseConfigFile(argparse.Action):
def __call__(self, parser, namespace, filename, option_string=None):
if not os.path.exists(filename):
raise ValueError('cannot find config at `%s`'%filename)
with open(filename) as f:
config = json.load(f)
for key, value in config.items():
# FIXME: hard code date convert
if 'date' in key:
value = pd.Timestamp(value)
setattr(namespace, key, value)
def parse_args():
parser = argparse.ArgumentParser()
# model
parser.add_argument('--model_name', default='GRU')
parser.add_argument('--input_size', type=int, default=5)
parser.add_argument('--hidden_size', type=int, default=32)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--num_factors', type=int, default=10)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--dropatt', type=float, default=0.5)
parser.add_argument('--disable_gat', action='store_true')
# training
parser.add_argument('--rho', type=float, default=0.99)
parser.add_argument('--lamb', type=float, default=0.01)
parser.add_argument('--n_epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--early_stop', type=int, default=20)
parser.add_argument('--update_freq', type=int, default=64)
parser.add_argument('--next_ret_only', action='store_true')
parser.add_argument('--add_intercept', action='store_true', default=True) # default=True -> disable this argument
parser.add_argument('--clip_weight', action='store_true', default=True) # default=True -> disable this argument
# data
parser.add_argument('--pin_memory', action='store_true', default=True) # default=True -> disable this argument
parser.add_argument('--train_start_date', type=pd.Timestamp, default='2007-01-01')
parser.add_argument('--train_end_date', type=pd.Timestamp, default='2014-12-31')
parser.add_argument('--valid_start_date', type=pd.Timestamp, default='2015-01-01')
parser.add_argument('--valid_end_date', type=pd.Timestamp, default='2016-12-31')
parser.add_argument('--test_start_date', type=pd.Timestamp, default='2017-01-01')
parser.add_argument('--test_end_date', type=pd.Timestamp, default='2099-12-31')
# other
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', default='cuda')
parser.add_argument('--config', action=ParseConfigFile)
parser.add_argument('--init_state', default=None)
parser.add_argument('--datadir', default='./data')
parser.add_argument('--feature', default='feature')
parser.add_argument('--ret', default='label')
parser.add_argument('--outdir', default='./output')
parser.add_argument('--overwrite', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)