-
Notifications
You must be signed in to change notification settings - Fork 13
/
SFAfeature.m
280 lines (249 loc) · 11.3 KB
/
SFAfeature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
function [feature1, feature2, feature3] = SFAfeature(im_lists, layer_name, options)
% SFA features
% written by Dingquan Li
% dingquanli@pku.edu.cn
% IDM, SMS, PKU
% Last update: Aug. 9, 2017
if ~exist('options','var')
options = 'none';
end
% multi-patch representation
patchSize = [224 224]; %
stride = floor(patchSize/2); %
% Initialize the DCNN
model = [fileparts(which(mfilename)) '/models/ResNet-50-deploy.prototxt']; %
weights = [fileparts(which(mfilename)) '/models/ResNet-50-model.caffemodel']; %
caffe.set_mode_gpu(); %
net = caffe.Net(model, weights, 'test');
l = net.blobs(layer_name).shape;
l = l(3);
feature1 = zeros(length(im_lists),2*l);
feature2 = zeros(length(im_lists),5*l);
feature3 = zeros(length(im_lists),4*l);
for k = 1:length(im_lists)
fprintf(['Extracting the feature of the ' num2str(k) 'th image ...\n']);
im = imread(im_lists{k});
patches = im2patches(im, patchSize, stride);
% feature extraction
patch_features = DCNN(patches, net, layer_name);
% feature aggregation
feature_mean = mean(patch_features,2);
feature_std = std(patch_features,0,2);
feature_q4 = prctile(patch_features,100,2);
feature_q3 = prctile(patch_features,75,2);
feature_q2 = prctile(patch_features,50,2);
feature_q1 = prctile(patch_features,25,2);
feature_q0 = prctile(patch_features,0,2);
feature_Moment2 = moment(patch_features,2,2);
feature_Moment3 = moment(patch_features,3,2);
feature_Moment4 = moment(patch_features,4,2);
feature1(k,:) = [feature_mean;feature_std]'; % mean&std aggregation
feature2(k,:) = [feature_q4;feature_q3;feature_q2;feature_q1;feature_q0]'; % quantile aggregation
feature3(k,:) = [feature_mean; nthroot(feature_Moment2,2);nthroot(feature_Moment3,3);...
nthroot(feature_Moment4,4)]'; % moment aggregation
switch options
case 'flipH'
patches = im2patches(im(:,end:-1:1,:), patchSize, stride);
% feature extraction
patch_features = DCNN(patches, net, layer_name);
% feature aggregation
feature_mean = mean(patch_features,2);
feature_std = std(patch_features,0,2);
feature_q4 = prctile(patch_features,100,2);
feature_q3 = prctile(patch_features,75,2);
feature_q2 = prctile(patch_features,50,2);
feature_q1 = prctile(patch_features,25,2);
feature_q0 = prctile(patch_features,0,2);
feature_Moment2 = moment(patch_features,2,2);
feature_Moment3 = moment(patch_features,3,2);
feature_Moment4 = moment(patch_features,4,2);
feature1(k+length(im_lists),:) = [feature_mean;feature_std]'; % mean&std aggregation
feature2(k+length(im_lists),:) = [feature_q4;feature_q3;feature_q2;feature_q1;feature_q0]'; % quantile aggregation
feature3(k+length(im_lists),:) = [feature_mean; nthroot(feature_Moment2,2);nthroot(feature_Moment3,3);...
nthroot(feature_Moment4,4)]'; % moment aggregation
case 'clipUL'
T = 6;
for i = 0:T-1
for j = 0:T-1
if i^2+j^2==0
continue
end
patches = im2patches(im(i+1:end,j+1:end,:), patchSize, stride);
% feature extraction
patch_features = DCNN(patches, net, layer_name);
% feature aggregation'res5c'
feature_mean = mean(patch_features,2);
feature_std = std(patch_features,0,2);
feature_q4 = prctile(patch_features,100,2);
feature_q3 = prctile(patch_features,75,2);
feature_q2 = prctile(patch_features,50,2);
feature_q1 = prctile(patch_features,25,2);
feature_q0 = prctile(patch_features,0,2);
feature_Moment2 = moment(patch_features,2,2);
feature_Moment3 = moment(patch_features,3,2);
feature_Moment4 = moment(patch_features,4,2);
feature1(k+(i*T+j)*length(im_lists),:) = [feature_mean;feature_std]'; % mean&std aggregation
feature2(k+(i*T+j)*length(im_lists),:) = [feature_q4;feature_q3;feature_q2;feature_q1;feature_q0]'; % quantile aggregation
feature3(k+(i*T+j)*length(im_lists),:) = [feature_mean; nthroot(feature_Moment2,2);nthroot(feature_Moment3,3);...
nthroot(feature_Moment4,4)]'; % moment aggregation
end
end
end
end
caffe.reset_all();
function patch_features = DCNN(patches, net, layer_name)
% Extract high-level semantic features from pool5 of ResNet-50
% Preprocess the patches
im_data = patches(:,:,[3 2 1],:); % RGB2BGR
im_data = permute(im_data,[2 1 3 4]); % HWC2WHC
im_data = single(im_data); % single
cropped_dim = size(patches,1);
mean_data = caffe.io.read_mean([fileparts(which(mfilename)) '/models/imagenet_mean.binaryproto']); %
topleft = floor((size(mean_data,1)-cropped_dim)/2)+1;
mean_data = mean_data(topleft:topleft+cropped_dim-1,topleft:topleft+cropped_dim-1,:);
crops_data = arrayfun(@(i)im_data(:,:,:,i)-mean_data,1:size(patches,4),'UniformOutput',false);
% Extract features
l = net.blobs(layer_name).shape; % 2048
l = l(3);
patch_features = zeros(l,length(crops_data));
for n = 1:length(crops_data)
net.forward(crops_data(n));
% patch_features(:,n) = std(reshape(net.blobs('res5c').get_data(),[],l,1),0,1); % pool5
patch_features(:,n) = mean(reshape(net.blobs(layer_name).get_data(),[],l,1)); % pool5
% patch_features(:,n) = max(reshape(net.blobs('res5c').get_data(),[],l,1)); % pool5
end
patch_features = double(patch_features);
function [patches,imcol,I] = im2patches(I, patchSize, stride)
% IM2PATCHES Extract rectangular patches from input image.
%
% patches = IM2PATCHES(I,patchSize) I can be a MxN matrix (e.g. gray-
% scale image) or a MxNxK array (e.g. RGB image). patchSize can be:
% a) a scalar, in which case: patchHeight = patchWidth = patchSize.
% b) a vector [patchHeight,patchWidth]
% c) a Mx4 matrix with bounding box coordinates in the form
% [xmin,ymin,xmax,ymax].
% patches is a patchHeight x patchWidth x K x nPatches array (K >= 1).
%
% patches = IM2PATCHES(I,patchSize,stride) stride between consecutive
% patches. Stride can be used to extract overlapping patchesand can be
% either a scalar, or a 2x1 vector to define different strides across
% axes x and y.
%
% [patches,imcol,I] = IM2PATCHES(...) also returns imcol, which is a
% nPixelsPerPatch x nPatches matrix whose columns are the elements of
% each patch, and I, which is the input image I after padding with zeros.
%
% USAGE EXAMPLES:
% patches = im2patches(I,[h,w]); % equal to: im2col(I,[h,w],'distinct')
% patches = im2patches(I,[h,w],1); % equal to: im2col(I,[h,w],'sliding')
%
% NOTE: IM2PATCHES extracts patches padding with zeros when necessary.
% The only exception is when stride == 1, or when the stride has a value
% that the last patches horizontally and vertically fit precicely in the
% image, without crossing the borders.
%
% See also: patches2im, im2col, col2im
%
% Stavros Tsogkas, <stavros.tsogkas@ecp.fr>
% Last update: August 2015
assert(ismatrix(I) || ndims(I) == 3, 'Input must be a 2D or 3D array');
if ismatrix(patchSize) && size(patchSize,2) == 4
warning('This part of the function has not been tested')
% patchSize is a Mx4 matrix containing the [xmin,ymin,xmax,ymax]
% coordinates of bounding boxes that are fully contained in the image
bb = patchSize;
bb(:,1) = max(1,bb(:,1));
bb(:,2) = max(1,bb(:,2));
bb(:,3) = min(size(I,2),bb(:,3));
bb(:,4) = min(size(I,1),bb(:,4));
patches = cell(size(bb,1),1);
for i=1:size(bb,1)
patches{i} = I(bb(i,2):bb(i,4),bb(i,1):bb(i,3),:);
end
else
assert(all(patchSize > 0), 'Patch size cannot be negative or zero')
if isscalar(patchSize) % Square patches
patchHeight = patchSize;
patchWidth = patchSize;
elseif numel(patchSize) == 2 % Rectangular patches
patchHeight = patchSize(1);
patchWidth = patchSize(2);
else
error('patchSize can be either a scalar or a [patchHeight, patchWidth] vector.')
end
if nargin < 3 % Identical strides for X and Y axis.
strideX = patchWidth; % Default is equivalent to 'distinct'
strideY = patchHeight; % option for Matlab's im2col.
elseif isscalar(stride)
strideY = stride;
strideX = stride;
elseif numel(stride) == 2 % Different strides for X and Y axis.
strideY = stride(1);
strideX = stride(2);
else
error('Stride can be either a scalar or a [strideX, strideY] vector.')
end
[hin,win,din] = size(I);
hout = hin - mod(hin-patchHeight,strideY) + strideY*(strideY > 1);
wout = win - mod(win-patchWidth, strideX) + strideX*(strideX > 1);
nPixelsPerPatch = patchWidth*patchHeight*din;
I(end+1:hout,end+1:wout,:) = 0; % pad with zeros if necessary
% x-y indices for a single (possibly N-dimensional) patch
[x,y,z] = meshgrid(1:patchWidth,1:patchHeight,1:din);
% pixel indices for all patches
[xstart,ystart] = meshgrid(0:strideX:(wout-patchWidth),0:strideY:(hout-patchHeight));
inds = bsxfun(@plus, reshape(y,nPixelsPerPatch,[]), ystart(:)');
inds = inds + (bsxfun(@plus, hout*reshape(x-1,nPixelsPerPatch,[]), hout*xstart(:)'));
inds = bsxfun(@plus, inds, (z(:)-1)*(hout*wout));
imcol = I(inds);
patches = reshape(imcol,patchHeight,patchWidth,din,[]);
end
% =========================================================================
% Alternative versions for Matlab's im2col 'distinct' and 'sliding' modes.
% These versions are a little faster than the code used in im2patches for
% creating the imcol image, but they cannot handle an arbitrary stride
% between neighboring patches.
% =========================================================================
% % -------------------------------------------------------------------------
% function out = im2col_distinct(A,blocksize)
% % -----------------------------------------------------------------------
% nrows = blocksize(1);
% ncols = blocksize(2);
% nele = nrows*ncols;
%
% row_ext = mod(size(A,1),nrows);
% col_ext = mod(size(A,2),ncols);
%
% padrowlen = (row_ext~=0)*(nrows - row_ext);
% padcollen = (col_ext~=0)*(ncols - col_ext);
%
% A1 = zeros(size(A,1)+padrowlen,size(A,2)+padcollen);
% A1(1:size(A,1),1:size(A,2)) = A;
%
% t1 = reshape(A1,nrows,size(A1,1)/nrows,[]);
% t2 = reshape(permute(t1,[1 3 2]),size(t1,1)*size(t1,3),[]);
% t3 = permute(reshape(t2,nele,size(t2,1)/nele,[]),[1 3 2]);
% out = reshape(t3,nele,[]);
%
% return;
%
% % -------------------------------------------------------------------------
% function out = im2col_sliding(A,blocksize)
% % -------------------------------------------------------------------------
%
% nrows = blocksize(1);
% ncols = blocksize(2);
%
% %// Get sizes for later usages
% [m,n] = size(A);
%
% %// Start indices for each block
% start_ind = reshape(bsxfun(@plus,[1:m-nrows+1]',[0:n-ncols]*m),[],1); %//'
%
% %// Row indices
% lin_row = permute(bsxfun(@plus,start_ind,[0:nrows-1])',[1 3 2]); %//'
%
% %// Get linear indices based on row and col indices and get desired output
% out = A(reshape(bsxfun(@plus,lin_row,[0:ncols-1]*m),nrows*ncols,[]));
%
% return;