-
Notifications
You must be signed in to change notification settings - Fork 3
/
setup.py
50 lines (44 loc) · 2.07 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import codecs
import os
import re
from pkg_resources import parse_requirements, parse_version
from setuptools import find_packages, setup
here = os.path.abspath(os.path.dirname(__file__))
with open("requirements.txt") as requirements_file:
install_requires = list(map(str, parse_requirements(requirements_file)))
# loading version from setup.py
with codecs.open(os.path.join(here, "lean_transformer/__init__.py"), encoding="utf-8") as init_file:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", init_file.read(), re.M)
version_string = version_match.group(1)
with open("requirements-dev.txt") as dev_requirements_file:
extras = dict(dev=list(map(str, parse_requirements(dev_requirements_file))))
setup(
name="lean_transformer",
version=version_string,
description="PyTorch transformers that don't hog your GPU memory.",
long_description="Memory-efficient transformers with optional sparsity, reversible layers, checkpoints, etc.",
author="Learning@home & contributors",
author_email="hivemind-team@hotmail.com",
url="https://github.com/learning-at-home/lean_transformer",
packages=find_packages(exclude=["tests"]),
license="MIT",
install_requires=install_requires,
extras_require=extras,
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
keywords="pytorch, deep learning, machine learning, gpu, efficient training, efficient inference",
)