EasyAnimate currently maintains several versions, each with different training commands. The default training commands for the different versions are as follows:
We can choose whether to use deep speed in EasyAnimateV4, which can save a lot of video memory.
EasyAnimateV4 without deepspeed:
export MODEL_NAME="models/Diffusion_Transformer/EasyAnimateV4-XL-2-InP"
export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/metadata.json"
export NCCL_IB_DISABLE=1
export NCCL_P2P_DISABLE=1
NCCL_DEBUG=INFO
# When train model with multi machines, use "--config_file accelerate.yaml" instead of "--mixed_precision='bf16'".
accelerate launch --mixed_precision="bf16" scripts/train.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATASET_NAME \
--train_data_meta=$DATASET_META_NAME \
--config_path "config/easyanimate_video_slicevae_multi_text_encoder_v4.yaml" \
--image_sample_size=512 \
--video_sample_size=512 \
--token_sample_size=512 \
--video_sample_stride=1 \
--video_sample_n_frames=144 \
--train_batch_size=1 \
--video_repeat=1 \
--gradient_accumulation_steps=1 \
--dataloader_num_workers=8 \
--num_train_epochs=100 \
--checkpointing_steps=500 \
--learning_rate=2e-05 \
--lr_scheduler="constant_with_warmup" \
--lr_warmup_steps=100 \
--seed=42 \
--output_dir="output_dir" \
--enable_xformers_memory_efficient_attention \
--gradient_checkpointing \
--mixed_precision="bf16" \
--adam_weight_decay=3e-2 \
--adam_epsilon=1e-10 \
--vae_mini_batch=1 \
--max_grad_norm=0.05 \
--random_hw_adapt \
--training_with_video_token_length \
--motion_sub_loss \
--not_sigma_loss \
--random_frame_crop \
--enable_bucket \
--train_mode="inpaint" \
--trainable_modules "."
EasyAnimateV4 with deepspeed:
export MODEL_NAME="models/Diffusion_Transformer/EasyAnimateV4-XL-2-InP"
export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/metadata.json"
export NCCL_IB_DISABLE=1
export NCCL_P2P_DISABLE=1
NCCL_DEBUG=INFO
# When train model with multi machines, use "--config_file accelerate.yaml" instead of "--mixed_precision='bf16'".
accelerate launch --use_deepspeed --deepspeed_config_file config/zero_stage2_config.json --deepspeed_multinode_launcher standard scripts/train.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATASET_NAME \
--train_data_meta=$DATASET_META_NAME \
--config_path "config/easyanimate_video_slicevae_multi_text_encoder_v4.yaml" \
--image_sample_size=512 \
--video_sample_size=512 \
--token_sample_size=512 \
--video_sample_stride=1 \
--video_sample_n_frames=144 \
--train_batch_size=1 \
--video_repeat=1 \
--gradient_accumulation_steps=1 \
--dataloader_num_workers=8 \
--num_train_epochs=100 \
--checkpointing_steps=500 \
--learning_rate=2e-05 \
--lr_scheduler="constant_with_warmup" \
--lr_warmup_steps=100 \
--seed=42 \
--output_dir="output_dir" \
--enable_xformers_memory_efficient_attention \
--gradient_checkpointing \
--mixed_precision="bf16" \
--adam_weight_decay=3e-2 \
--adam_epsilon=1e-10 \
--vae_mini_batch=1 \
--max_grad_norm=0.05 \
--random_hw_adapt \
--training_with_video_token_length \
--motion_sub_loss \
--not_sigma_loss \
--random_frame_crop \
--enable_bucket \
--use_deepspeed \
--train_mode="inpaint" \
--trainable_modules "."
(Obsolete) EasyAnimateV3:
EasyAnimateV3's training requires a larger batch size; otherwise, the training may become unstable. If the batch size is small, you can choose to use LoRA training or freeze some layers during training.
For example, we can set trainable_modules to "transformer_blocks.6", "transformer_blocks.7", "transformer_blocks.8", "transformer_blocks.9", "transformer_blocks.10", "transformer_blocks.11", "transformer_blocks.12", which means only these modules will be trained.
export MODEL_NAME="models/Diffusion_Transformer/EasyAnimateV3-XL-2-InP-512x512"
export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/metadata.json"
export NCCL_IB_DISABLE=1
export NCCL_P2P_DISABLE=1
NCCL_DEBUG=INFO
# When train model with multi machines, use "--config_file accelerate.yaml" instead of "--mixed_precision='bf16'".
accelerate launch --mixed_precision="bf16" scripts/train.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATASET_NAME \
--train_data_meta=$DATASET_META_NAME \
--config_path "config/easyanimate_video_slicevae_motion_module_v3.yaml" \
--image_sample_size=512 \
--video_sample_size=512 \
--video_sample_stride=1 \
--video_sample_n_frames=144 \
--train_batch_size=1 \
--video_repeat=1 \
--gradient_accumulation_steps=1 \
--dataloader_num_workers=8 \
--num_train_epochs=100 \
--checkpointing_steps=500 \
--learning_rate=1e-05 \
--lr_scheduler="constant_with_warmup" \
--lr_warmup_steps=100 \
--seed=42 \
--output_dir="output_dir" \
--enable_xformers_memory_efficient_attention \
--gradient_checkpointing \
--mixed_precision="bf16" \
--adam_weight_decay=3e-2 \
--adam_epsilon=1e-10 \
--max_grad_norm=3e-2 \
--vae_mini_batch=1 \
--random_frame_crop \
--enable_bucket \
--train_mode="inpaint" \
--trainable_modules "transformer_blocks" "proj_out" "long_connect_fc"
(Obsolete) EasyAnimateV2:
export MODEL_NAME="models/Diffusion_Transformer/EasyAnimateV2-XL-2-512x512"
export DATASET_NAME="datasets/internal_datasets/"
export DATASET_META_NAME="datasets/internal_datasets/metadata.json"
export NCCL_IB_DISABLE=1
export NCCL_P2P_DISABLE=1
NCCL_DEBUG=INFO
# When train model with multi machines, use "--config_file accelerate.yaml" instead of "--mixed_precision='bf16'".
accelerate launch --mixed_precision="bf16" scripts/train.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATASET_NAME \
--train_data_meta=$DATASET_META_NAME \
--config_path "config/easyanimate_video_magvit_motion_module_v2.yaml" \
--image_sample_size=512 \
--video_sample_size=512 \
--video_sample_stride=1 \
--video_sample_n_frames=144 \
--train_batch_size=1 \
--video_repeat=1 \
--gradient_accumulation_steps=1 \
--dataloader_num_workers=8 \
--num_train_epochs=100 \
--checkpointing_steps=500 \
--learning_rate=2e-05 \
--lr_scheduler="constant_with_warmup" \
--lr_warmup_steps=100 \
--seed=42 \
--output_dir="output_dir" \
--enable_xformers_memory_efficient_attention \
--gradient_checkpointing \
--mixed_precision="bf16" \
--adam_weight_decay=3e-2 \
--adam_epsilon=1e-10 \
--max_grad_norm=3e-2 \
--vae_mini_batch=1 \
--random_frame_crop \
--enable_bucket \
--trainable_modules "transformer_blocks" "proj_out" "long_connect_fc"