-
Notifications
You must be signed in to change notification settings - Fork 0
/
RJwrapper.bbl
278 lines (237 loc) · 11 KB
/
RJwrapper.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\begin{thebibliography}{40}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
\bibitem[Biecek(2018)]{DALEX-pkg}
P.~Biecek.
\newblock Dalex: Explainers for complex predictive models in r.
\newblock \emph{Journal of Machine Learning Research}, 19\penalty0
(84):\penalty0 1--5, 2018.
\newblock URL \url{http://jmlr.org/papers/v19/18-416.html}.
\bibitem[Biecek(2019)]{ingredients-pkg}
P.~Biecek.
\newblock \emph{ingredients: Effects and Importances of Model Ingredients},
2019.
\newblock URL \url{https://CRAN.R-project.org/package=ingredients}.
\newblock R package version 0.3.3.
\bibitem[Bischl et~al.(2016)Bischl, Lang, Kotthoff, Schiffner, Richter,
Studerus, Casalicchio, and Jones]{mlr-pkg}
B.~Bischl, M.~Lang, L.~Kotthoff, J.~Schiffner, J.~Richter, E.~Studerus,
G.~Casalicchio, and Z.~M. Jones.
\newblock {mlr}: Machine learning in r.
\newblock \emph{Journal of Machine Learning Research}, 17\penalty0
(170):\penalty0 1--5, 2016.
\newblock URL \url{http://jmlr.org/papers/v17/15-066.html}.
\bibitem[Breiman(1996)]{bagging-breiman-1996}
L.~Breiman.
\newblock Bagging predictors.
\newblock \emph{Machine Learning}, 8\penalty0 (2):\penalty0 209--218, 1996.
\newblock URL \url{https://doi.org/10.1023/A:1018054314350}.
\bibitem[Breiman(2001)]{random-breiman-2001}
L.~Breiman.
\newblock Random forests.
\newblock \emph{Machine Learning}, 45\penalty0 (1):\penalty0 5--32, 2001.
\newblock URL \url{https://doi.org/10.1023/A:1010933404324}.
\bibitem[Breiman et~al.(1984)Breiman, Friedman, and Charles
J.~Stone]{classification-breiman-1984}
L.~Breiman, J.~Friedman, and R.~A.~O. Charles J.~Stone.
\newblock \emph{Classification and Regression Trees}.
\newblock The Wadsworth and Brooks-Cole statistics-probability series. Taylor
\& Francis, 1984.
\newblock ISBN 9780412048418.
\bibitem[Chang(2019)]{R6-pkg}
W.~Chang.
\newblock \emph{R6: Encapsulated Classes with Reference Semantics}, 2019.
\newblock URL \url{https://CRAN.R-project.org/package=R6}.
\newblock R package version 2.4.0.
\bibitem[Chen et~al.(2017)Chen, He, and Benesty]{xgboost-pkg}
T.~Chen, T.~He, and M.~Benesty.
\newblock \emph{xgboost: Extreme Gradient Boosting}, 2017.
\newblock URL \url{https://CRAN.R-project.org/package=xgboost}.
\newblock R package version 0.6-4.
\bibitem[Cleveland(1979)]{robust-cleveland-1979}
W.~S. Cleveland.
\newblock Robust locally weighted regression and smoothing scatterplots.
\newblock \emph{Journal of the American Statistical Association}, 74\penalty0
(368):\penalty0 829--836, 1979.
\newblock \doi{10.1080/01621459.1979.10481038}.
\bibitem[Fisher and Dominici(2018)]{fisher-model-2018}
R.~C. Fisher, A. and F.~Dominici.
\newblock Model class reliance: Variable importance measures for any machine
learning model class, from the "rashomon" perspective.
\newblock \emph{arXiv preprint arXiv:1801.01489}, 2018.
\bibitem[Friedman et~al.(2010)Friedman, Hastie, and Tibshirani]{glmnet-pkg}
J.~Friedman, T.~Hastie, and R.~Tibshirani.
\newblock Regularization paths for generalized linear models via coordinate
descent.
\newblock \emph{Journal of Statistical Software}, 33\penalty0 (1):\penalty0
1--22, 2010.
\newblock URL \url{http://www.jstatsoft.org/v33/i01/}.
\bibitem[Friedman(1991)]{multivariate-friedman-1991}
J.~H. Friedman.
\newblock Multivariate adaptive regression splines.
\newblock \emph{The Annals of Statistics}, 19\penalty0 (1):\penalty0 1--67,
1991.
\newblock URL \url{https://doi.org/10.1214/aos/1176347963}.
\bibitem[Garson(1991)]{interpreting-garson-1991}
D.~G. Garson.
\newblock Interpreting neural-network connection weights.
\newblock \emph{Artificial Intelligence Expert}, 6\penalty0 (4):\penalty0
46--51, 1991.
\bibitem[Gedeon(1997)]{data-gedeon-1997}
T.~Gedeon.
\newblock Data mining of inputs: Analysing magnitude and functional measures.
\newblock \emph{International Journal of Neural Systems}, 24\penalty0
(2):\penalty0 123--140, 1997.
\newblock URL \url{https://doi.org/10.1007/s10994-006-6226-1}.
\bibitem[Goh(1995)]{back-goh-1995}
A.~Goh.
\newblock Back-propagation neural networks for modeling complex systems.
\newblock \emph{Artificial Intelligence in Engineering}, 9\penalty0
(3):\penalty0 143--151, 1995.
\newblock \doi{http://dx.doi.org/10.1016/0954-1810(94)00011-S}.
\bibitem[Goldstein et~al.(2015)Goldstein, Kapelner, Bleich, and
Pitkin]{goldstein-peeking-2015}
A.~Goldstein, A.~Kapelner, J.~Bleich, and E.~Pitkin.
\newblock Peeking inside the black box: Visualizing statistical learning with
plots of individual conditional expectation.
\newblock \emph{Journal of Computational and Graphical Statistics}, 24\penalty0
(1):\penalty0 44--65, 2015.
\newblock URL \url{https://doi.org/10.1080/10618600.2014.907095}.
\bibitem[Greenwell and Boehmke(2018)]{vip-pkg}
B.~Greenwell and B.~Boehmke.
\newblock \emph{vip: Variable Importance Plots}, 2018.
\newblock URL \url{https://CRAN.R-project.org/package=vip}.
\newblock R package version 0.1.0.
\bibitem[Greenwell(2017)]{greenwell-pdp-2017}
B.~M. Greenwell.
\newblock pdp: An r package for constructing partial dependence plots.
\newblock \emph{The R Journal}, 9\penalty0 (1):\penalty0 421--436, 2017.
\newblock URL
\url{https://journal.r-project.org/archive/2017/RJ-2017-016/index.html}.
\bibitem[Greenwell et~al.(2018)Greenwell, Boehmke, and
McCarthy]{greenwell-simple-2018}
B.~M. Greenwell, B.~C. Boehmke, and A.~J. McCarthy.
\newblock A simple and effective model-based variable importance measure.
\newblock \emph{arXiv preprint arXiv:1805.04755}, 2018.
\bibitem[Hastie et~al.(2009)Hastie, Tibshirani, and
Friedman]{hastie-elements-2009}
T.~Hastie, R.~Tibshirani, and J.~Friedman.
\newblock \emph{The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Second Edition}.
\newblock Springer Series in Statistics. Springer-Verlag, 2009.
\bibitem[Karatzoglou et~al.(2004)Karatzoglou, Smola, Hornik, and
Zeileis]{kernlab-pkg}
A.~Karatzoglou, A.~Smola, K.~Hornik, and A.~Zeileis.
\newblock Kernlab -- an {S4} package for kernel methods in {R}.
\newblock \emph{Journal of Statistical Software}, 11\penalty0 (9):\penalty0
1--20, 2004.
\newblock URL \url{https://doi.org/10.18637/jss.v011.i09}.
\bibitem[Kuhn(2017{\natexlab{a}})]{AmesHousing-pkg}
M.~Kuhn.
\newblock \emph{AmesHousing: The Ames Iowa Housing Data}, 2017{\natexlab{a}}.
\newblock URL \url{https://CRAN.R-project.org/package=AmesHousing}.
\newblock R package version 0.0.3.
\bibitem[Kuhn(2017{\natexlab{b}})]{caret-pkg}
M.~Kuhn.
\newblock \emph{caret: Classification and Regression Training},
2017{\natexlab{b}}.
\newblock URL \url{https://CRAN.R-project.org/package=caret}.
\newblock R package version 6.0-76.
\bibitem[Kuhn and Johnson(2013)]{applied-kuhn-2013}
M.~Kuhn and K.~Johnson.
\newblock \emph{Applied Predictive Modeling}.
\newblock SpringerLink : B{\"u}cher. Springer New York, 2013.
\newblock ISBN 9781461468493.
\bibitem[Leisch and Dimitriadou(2012)]{mlbench-pkg}
F.~Leisch and E.~Dimitriadou.
\newblock \emph{mlbench: Machine Learning Benchmark Problems}, 2012.
\newblock URL \url{https://CRAN.R-project.org/package=mlbench}.
\newblock R package version 2.1-1.
\bibitem[Mersmann(2018)]{microbenchmark-pkg}
O.~Mersmann.
\newblock \emph{microbenchmark: Accurate Timing Functions}, 2018.
\newblock URL \url{https://CRAN.R-project.org/package=microbenchmark}.
\newblock R package version 1.4-6.
\bibitem[Milborrow(2017)]{earth-pkg}
S.~Milborrow.
\newblock \emph{earth: Multivariate Adaptive Regression Splines}, 2017.
\newblock URL \url{https://CRAN.R-project.org/package=earth}.
\newblock R package version 4.5.0.
\bibitem[Molnar(2019)]{molnar-2019-iml}
C.~Molnar.
\newblock \emph{Interpretable Machine Learning}.
\newblock 2019.
\newblock \url{https://christophm.github.io/interpretable-ml-book/}.
\bibitem[Molnar et~al.(2018)Molnar, Bischl, and Casalicchio]{iml-pkg}
C.~Molnar, B.~Bischl, and G.~Casalicchio.
\newblock iml: An r package for interpretable machine learning.
\newblock \emph{JOSS}, 3\penalty0 (26):\penalty0 786, 2018.
\newblock \doi{10.21105/joss.00786}.
\newblock URL \url{http://joss.theoj.org/papers/10.21105/joss.00786}.
\bibitem[Müller and Wickham(2019)]{tibble-pkg}
K.~Müller and H.~Wickham.
\newblock \emph{tibble: Simple Data Frames}, 2019.
\newblock URL \url{https://CRAN.R-project.org/package=tibble}.
\newblock R package version 2.1.1.
\bibitem[Olden et~al.(2004)Olden, Joy, and Death]{accurate-olden-2004}
J.~D. Olden, M.~K. Joy, and R.~G. Death.
\newblock An accurate comparison of methods for quantifying variable importance
in artificial neural networks using simulated data.
\newblock \emph{Ecological Modelling}, 178\penalty0 (3):\penalty0 389--397,
2004.
\newblock \doi{http://dx.doi.org/10.1016/j.ecolmodel.2004.03.013}.
\bibitem[Polley et~al.(2018)Polley, LeDell, Kennedy, and {van der
Laan}]{SuperLearner-pkg}
E.~Polley, E.~LeDell, C.~Kennedy, and M.~{van der Laan}.
\newblock \emph{SuperLearner: Super Learner Prediction}, 2018.
\newblock URL \url{https://CRAN.R-project.org/package=SuperLearner}.
\newblock R package version 2.0-24.
\bibitem[{Revolution Analytics} and Weston(2015{\natexlab{a}})]{doParallel-pkg}
{Revolution Analytics} and S.~Weston.
\newblock \emph{doParallel: Foreach Parallel Adaptor for the 'parallel'
Package}, 2015{\natexlab{a}}.
\newblock URL \url{https://CRAN.R-project.org/package=doParallel}.
\newblock R package version 1.0.10.
\bibitem[{Revolution Analytics} and Weston(2015{\natexlab{b}})]{foreach-pkg}
{Revolution Analytics} and S.~Weston.
\newblock \emph{foreach: Provides Foreach Looping Construct for R},
2015{\natexlab{b}}.
\newblock URL \url{https://CRAN.R-project.org/package=foreach}.
\newblock R package version 1.4.3.
\bibitem[Ridgeway(2017)]{gbm-pkg}
G.~Ridgeway.
\newblock \emph{gbm: Generalized Boosted Regression Models}, 2017.
\newblock URL \url{https://CRAN.R-project.org/package=gbm}.
\newblock R package version 2.1.3.
\bibitem[Venables and Ripley(2002)]{nnet-pkg}
W.~N. Venables and B.~D. Ripley.
\newblock \emph{Modern Applied Statistics with S}.
\newblock Springer, New York, fourth edition, 2002.
\newblock URL \url{http://www.stats.ox.ac.uk/pub/MASS4}.
\newblock ISBN 0-387-95457-0.
\bibitem[Wickham(2011)]{plyr-pkg}
H.~Wickham.
\newblock The split-apply-combine strategy for data analysis.
\newblock \emph{Journal of Statistical Software}, 40\penalty0 (1):\penalty0
1--29, 2011.
\newblock URL \url{https://doi.org/10.18637/jss.v040.i01}.
\bibitem[Wickham(2016)]{ggplot2-pkg}
H.~Wickham.
\newblock \emph{ggplot2: Elegant Graphics for Data Analysis}.
\newblock Springer-Verlag New York, 2016.
\newblock ISBN 978-3-319-24277-4.
\newblock URL \url{https://ggplot2.tidyverse.org}.
\bibitem[Wright(2017)]{ranger-pkg}
M.~N. Wright.
\newblock \emph{ranger: A Fast Implementation of Random Forests}, 2017.
\newblock URL \url{https://CRAN.R-project.org/package=ranger}.
\newblock R package version 0.7.0.
\bibitem[Xie et~al.(2018)Xie, Cheng, and Tan]{DT-pkg}
Y.~Xie, J.~Cheng, and X.~Tan.
\newblock \emph{DT: A Wrapper of the JavaScript Library 'DataTables'}, 2018.
\newblock URL \url{https://CRAN.R-project.org/package=DT}.
\newblock R package version 0.5.
\end{thebibliography}