-
Notifications
You must be signed in to change notification settings - Fork 1
/
EP8_Placeholder_With_Default.py
92 lines (75 loc) · 2.99 KB
/
EP8_Placeholder_With_Default.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- coding: utf-8 -*-
"""
| **@created on:** 06/06/18,
| **@author:** Prathyush SP,
| **@version:** v0.0.1
|
| **Description:**
| Basic Placeholders
| **Sphinx Documentation Status:** Complete
|
..todo::
"""
# Imports
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
start = time.time()
# Global Variables
EPOCH = 1
BATCH_SIZE = 32
DISPLAY_STEP = 1
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Create Placeholders
# Create Dataset
features_dataset = tf.data.Dataset.from_tensor_slices(mnist.train.images)
label_dataset = tf.data.Dataset.from_tensor_slices(mnist.train.labels)
dataset = tf.data.Dataset.zip((features_dataset, label_dataset)).batch(BATCH_SIZE).repeat(EPOCH)
# Create Dataset Iterator
iterator = dataset.make_initializable_iterator()
# Create features and labels
features, labels = iterator.get_next()
features_placeholder = tf.placeholder_with_default(features, [None, mnist.train.images.shape[-1]])
labels_placeholder = tf.placeholder_with_default(labels, [None, mnist.train.labels.shape[-1]])
# Deeplearning Model
def nn_model(features, labels):
bn = tf.layers.batch_normalization(features)
fc1 = tf.layers.dense(bn, 50)
fc2 = tf.layers.dense(fc1, 50)
fc2 = tf.layers.dropout(fc2)
fc3 = tf.layers.dense(fc2, 10)
loss = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=fc3))
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
return optimizer, loss
# Create elements from iterator
training_op, loss_op = nn_model(features=features_placeholder, labels=labels_placeholder)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
# Training without Feed Dict
sess = tf.train.MonitoredTrainingSession()
try:
sess.run([init_op, iterator.initializer])
batch_id, epoch_id, total_batches, avg_cost = 0, 0, int(mnist.train.num_examples / BATCH_SIZE), 0
while not sess.should_stop():
_, c = sess.run([training_op, loss_op])
avg_cost += c / total_batches
if batch_id == total_batches:
if epoch_id % DISPLAY_STEP == 0:
print("Epoch:", '%04d' % (epoch_id + 1), "cost={:.9f}".format(avg_cost))
batch_id, avg_cost, cost = 0, 0, []
epoch_id += 1
batch_id += 1
except tf.errors.OutOfRangeError:
print("Optimization Finished!")
print('Total Time Elapsed: {} secs'.format(time.time() - start))
# Training with Feed Dict
with tf.Session() as sess:
sess.run(init_op)
total_batches = int(mnist.test.num_examples / BATCH_SIZE)
avg_cost = 0.0
for i in range(total_batches):
batch_x, batch_y = mnist.test.next_batch(BATCH_SIZE)
_, c = sess.run([training_op, loss_op], feed_dict={features_placeholder: batch_x,
labels_placeholder: batch_y})
avg_cost += c / total_batches
print("Optimization Finished!")
print('Total Time Elapsed: {} secs'.format(time.time() - start))