-
Notifications
You must be signed in to change notification settings - Fork 3
/
power_sums.c
827 lines (725 loc) · 26 KB
/
power_sums.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/*
Low-level code to exhaust over trees of Weil polynomials.
This code does not implement parallelism; see the Cython wrapper.
TODO: check for memory leaks.
TODO: try the Routh-Hurwitz criterion.
#*****************************************************************************
# Copyright (C) 2019 Kiran S. Kedlaya <kskedl@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
*/
#include "power_sums.h"
/* Check for OpenMP at runtime.
*/
int has_openmp() {
#if defined(_OPENMP)
return(1);
#endif
return(0);
}
/*
Use a subresultant (Sturm-Habicht) sequence to test whether a given
polynomial has all real roots. Note that this test has an early abort
mechanism: having all real roots means that the sign sequence has
the maximal number of sign changes, so the test aborts as soon
as a sign change is missed.
This function assumes that:
- {poly, n} is a normalized vector with n >= 2
- {w, 2*n+1} is scratch space.
If a and b are not NULL, we add a*b to the constant term before testing.
Based on code by Sebastian Pancratz from the FLINT repository.
TODO: compare with floating-point interval arithmetic.
*/
int _fmpz_poly_all_real_roots(fmpz *poly, long n, fmpz *w, int force_squarefree,
const fmpz_t a, const fmpz_t b) {
fmpz *f0 = w + 0*n;
fmpz *f1 = w + 1*n;
fmpz *c = w + 2*n;
fmpz *d = w + 2*n+1;
fmpz *t;
_fmpz_vec_set(f0, poly, n);
/* Sanitize input so that n = deg(f0). */
while ((n > 2) && fmpz_is_zero(f0+n-1))
n--;
if (n <= 2) return(1);
if (a != NULL && b != NULL) fmpz_addmul(f0, a, b);
_fmpz_poly_derivative(f1, f0, n);
n--;
int sgn0_l = fmpz_sgn(f0+n);
while (1) {
/* At this point deg(f0) = n, deg(f1) = n-1.
We explicitly compute the pseudoremainder of f0 modulo f1:
f0 := f1[n-1]*f0 - f0[n]*x*f1
f0 := f0[n-1]*f1 - f1[n-1]*f0
*/
fmpz_set(c, f0+n);
_fmpz_vec_scalar_mul_fmpz(f0, f0, n, f1+n-1);
_fmpz_vec_scalar_submul_fmpz(f0+1, f1, n-1, c);
n--;
fmpz_set(c, f0+n);
fmpz_neg(d, f1+n);
_fmpz_vec_scalar_mul_fmpz(f0, f0, n, d);
_fmpz_vec_scalar_addmul_fmpz(f0, f1, n, c);
/* If f0 = 0, we win unless we are insisting on squarefree. */
if (!force_squarefree && _fmpz_vec_is_zero(f0, n)) return(1);
/* If we miss any one sign change, we cannot have enough. */
if (fmpz_sgn(f0+n-1) != sgn0_l) return(0);
if (n==1) return(1); /* If f0 is a scalar, it is nonzero and we win. */
/* Extract content from f0; in practice, this seems to do better than
an explicit subresultant computation. */
_fmpz_vec_content(c, f0, n);
_fmpz_vec_scalar_divexact_fmpz(f0, f0, n, c);
/* Swap f0 with f1. */
t = f0; f0 = f1; f1 = t;
}
}
/* Set res to floor(a). */
void fmpq_floor(fmpz_t res, const fmpq_t a) {
fmpz_fdiv_q(res, fmpq_numref(a), fmpq_denref(a));
};
/* Set res to ceil(a). */
void fmpq_ceil(fmpz_t res, const fmpq_t a) {
fmpz_cdiv_q(res, fmpq_numref(a), fmpq_denref(a));
};
void fmpz_sqrt_f(fmpz_t res, const fmpz_t a) {
fmpz_sqrt(res, a);
}
void fmpz_sqrt_c(fmpz_t res, const fmpz_t a) {
int s = fmpz_is_square(a);
fmpz_sqrt(res, a);
if (!s) fmpz_add_ui(res, res, 1);
}
/* Set res to floor(a + b sqrt(q)).
For efficiency, we do not assume a and b are canonical;
we must thus be careful about signs. */
void fmpq_floor_quad(fmpz_t res, fmpq_t a,
fmpq_t b, const fmpz_t q) {
if (b==NULL) fmpq_floor(res, a);
else {
fmpz *anum = fmpq_numref(a);
fmpz *aden = fmpq_denref(a);
int aden_s = fmpz_sgn(aden);
fmpz *bnum = fmpq_numref(b);
int bnum_s = fmpz_sgn(bnum);
fmpz *bden = fmpq_denref(b);
int bden_s = fmpz_sgn(bden);
fmpz_mul(res, aden, bnum);
fmpz_mul(res, res, res);
fmpz_mul(res, res, q);
if (bnum_s*bden_s >= 0) fmpz_sqrt_f(res, res);
else {
fmpz_sqrt_c(res, res);
fmpz_neg(res, res);
}
fmpz_mul_si(res, res, aden_s*bden_s);
fmpz_addmul(res, anum, bden);
if (bden_s > 0) fmpz_fdiv_q(res, res, aden);
else fmpz_cdiv_q(res, res, aden);
fmpz_fdiv_q(res, res, bden);
}
}
/* Set res to ceil(a + b sqrt(q)). */
void fmpq_ceil_quad(fmpz_t res, fmpq_t a,
fmpq_t b, const fmpz_t q) {
if (b==NULL) fmpq_ceil(res, a);
else {
fmpz *anum = fmpq_numref(a);
fmpz *aden = fmpq_denref(a);
int aden_s = fmpz_sgn(aden);
fmpz *bnum = fmpq_numref(b);
int bnum_s = fmpz_sgn(bnum);
fmpz *bden = fmpq_denref(b);
int bden_s = fmpz_sgn(bden);
fmpz_mul(res, aden, bnum);
fmpz_mul(res, res, res);
fmpz_mul(res, res, q);
if (bnum_s*bden_s >= 0) fmpz_sqrt_c(res, res);
else {
fmpz_sqrt_f(res, res);
fmpz_neg(res, res);
}
fmpz_mul_si(res, res, aden_s*bden_s);
fmpz_addmul(res, anum, bden);
if (bden_s > 0) fmpz_cdiv_q(res, res, aden);
else fmpz_fdiv_q(res, res, aden);
fmpz_cdiv_q(res, res, bden);
}
}
/* Memory allocation and initialization. */
ps_static_data_t *ps_static_init(int d, fmpz_t q, int coeffsign, fmpz_t lead,
int cofactor, fmpz *modlist, long node_limit,
int force_squarefree) {
int i, j, k, l;
ps_static_data_t *st_data;
fmpz_poly_t pol;
fmpz_t m, const1;
fmpq *k1;
fmpz_poly_init(pol);
fmpz_init(m);
fmpz_init_set_ui(const1, 1);
st_data = (ps_static_data_t *)malloc(sizeof(ps_static_data_t));
st_data->d = d;
st_data->sign = coeffsign;
fmpz_init(st_data->q);
fmpz_set(st_data->q, q);
st_data->node_limit = node_limit;
st_data->force_squarefree = force_squarefree;
fmpz_init(st_data->lead);
fmpz_set(st_data->lead, lead);
st_data->cofactor = _fmpz_vec_init(3);
switch (cofactor) {
case 0: /* Cofactor 1 */
fmpz_set_si(st_data->cofactor, 1);
fmpz_set_si(st_data->cofactor+1, 0);
fmpz_set_si(st_data->cofactor+2, 0);
break;
case 1: /* Cofactor x+sqrt(q) */
fmpz_set(st_data->cofactor, st_data->q);
fmpz_sqrt(st_data->cofactor, st_data->cofactor);
fmpz_set_si(st_data->cofactor+1, 1);
fmpz_set_si(st_data->cofactor+2, 0);
break;
case 2: /* Cofactor x-sqrt(q) */
fmpz_set(st_data->cofactor, st_data->q);
fmpz_sqrt(st_data->cofactor, st_data->cofactor);
fmpz_neg(st_data->cofactor, st_data->cofactor);
fmpz_set_si(st_data->cofactor+1, 1);
fmpz_set_si(st_data->cofactor+2, 0);
break;
case 3: /* Cofactor x^2-q */
fmpz_neg(st_data->cofactor, st_data->q);
fmpz_set_si(st_data->cofactor+1, 0);
fmpz_set_si(st_data->cofactor+2, 1);
break;
}
st_data->modlist = _fmpz_vec_init(d+1);
st_data->f = _fmpq_vec_init(d+1);
for (i=0; i<=d; i++) {
fmpz_set(st_data->modlist+i, modlist+d-i);
fmpq_set_si(st_data->f+i, d-i, 1);
fmpq_div_fmpz(st_data->f+i, st_data->f+i, st_data->lead);
/* In order to apply power sums and Descartes' rule of signs
when the modulus is 0, we must pretend that the modulus is 1. */
if (!fmpz_is_zero(st_data->modlist+i))
fmpq_mul_fmpz(st_data->f+i, st_data->f+i, st_data->modlist+i);
}
fmpz_mat_init(st_data->binom_mat, d+1, d+1);
for (i=0; i<=d; i++)
for (j=0; j<=d; j++)
fmpz_bin_uiui(fmpz_mat_entry(st_data->binom_mat, i, j), i, j);
st_data->hausdorff_mats = (fmpq_mat_t *)malloc((d+1)*sizeof(fmpq_mat_t));
for (i=0; i<=d; i++) {
fmpq_mat_init(st_data->hausdorff_mats[i], 2*d+2, d+1);
fmpq_mat_zero(st_data->hausdorff_mats[i]);
for (j=0; j<=i; j++)
for (k=0; k<=i; k++) {
// The coefficient of t^k in (t-2 sqrt(q))^j (t+2 sqrt(q))^{i-j}, rounding down the exponent of q.
if ((i-k)%2==0)
k1 = fmpq_mat_entry(st_data->hausdorff_mats[i], 2*j, k);
else
k1 = fmpq_mat_entry(st_data->hausdorff_mats[i], 2*j+1, k);
for (l=0; l<=j; l++) if (k-l >=0 && k-l<=i-j) {
fmpz_mul(m, fmpz_mat_entry(st_data->binom_mat, j, l),
fmpz_mat_entry(st_data->binom_mat, i-j, k-l));
if ((j-l)%2==1) fmpz_neg(m, m);
fmpq_add_fmpz(k1, k1, m);
}
fmpq_mul_2exp(k1, k1, i-k);
for (l=0; l<(i-k)/2; l++) fmpq_mul_fmpz(k1, k1, q);
}
}
st_data->sum_mats = (fmpq_mat_t *)malloc((d+1)*sizeof(fmpq_mat_t));
for (i=0; i<=d; i++) {
fmpq_mat_init(st_data->sum_mats[i], 1, d+1);
fmpq_mat_zero(st_data->sum_mats[i]);
arith_chebyshev_t_polynomial(pol, i);
for (j=0; j<=d; j++) {
/* Coefficients of 2*(i-th Chebyshev polynomial)(x/2).
If q != 1, the coeff of x^j is multiplied by q^{floor(i-j)/2}. */
if (j <= i) {
k1 = fmpq_mat_entry(st_data->sum_mats[i], 0, j);
fmpq_set_fmpz_frac(k1, fmpz_poly_get_coeff_ptr(pol, j), const1);
fmpz_mul_2exp(m, const1, j);
fmpq_div_fmpz(k1, k1, m);
fmpz_set_ui(m, 2);
fmpq_mul_fmpz(k1, k1, m);
if (!fmpz_is_one(st_data->q) && i%2==j%2) {
fmpz_set(m, st_data->q);
fmpz_pow_ui(m, m, (i-j)/2);
fmpq_mul_fmpz(k1, k1, m);
}
}
}
}
fmpz_poly_clear(pol);
fmpz_clear(m);
fmpz_clear(const1);
return(st_data);
}
ps_dynamic_data_t *ps_dynamic_init(int d, fmpz_t q, fmpz *coefflist) {
ps_dynamic_data_t *dy_data;
int i;
dy_data = (ps_dynamic_data_t *)malloc(sizeof(ps_dynamic_data_t));
dy_data->d = d;
dy_data->q_is_1 = fmpz_is_one(q);
/* Initialize mutable quantities */
dy_data->n = d;
dy_data->node_count = 0;
dy_data->ascend = 0;
dy_data->pol = _fmpz_vec_init(d+1);
dy_data->sympol = _fmpz_vec_init(2*d+3);
if (coefflist != NULL) {
dy_data->flag = 1; // Activate this process
for (i=0; i<=d; i++)
fmpz_set(dy_data->pol+i, coefflist+i);
} else dy_data->flag = 0;
fmpq_mat_init(dy_data->power_sums, d+1, 1);
fmpq_set_si(fmpq_mat_entry(dy_data->power_sums, 0, 0), d, 1);
fmpq_mat_init(dy_data->hankel_mat, d/2+1, d/2+1);
fmpq_mat_init(dy_data->hankel_dets, d/2+1, 1);
fmpq_set_si(fmpq_mat_entry(dy_data->hankel_dets, 0, 0), d, 1);
fmpq_mat_init(dy_data->hausdorff_prod, 2*d+2, 1);
fmpq_mat_init(dy_data->hausdorff_sums1, d+1, d+1);
fmpq_mat_init(dy_data->hausdorff_sums2, d+1, d+1);
dy_data->upper = _fmpz_vec_init(d+1);
/* Allocate scratch space */
fmpq_mat_init(dy_data->sum_prod, 1, 1);
dy_data->wlen = 3*d+10;
dy_data->w = _fmpz_vec_init(dy_data->wlen);
dy_data->w2len = 5;
dy_data->w2 = _fmpq_vec_init(dy_data->w2len);
return(dy_data);
}
/* Split off a subtree.
The first process gives up on the current branch, up to the first coefficient that is not uniquely specified;
the remaining work is yielded to the second process, which may in turn be split immediately.
*/
void ps_dynamic_split(ps_dynamic_data_t *dy_data, ps_dynamic_data_t *dy_data2) {
if ((dy_data == NULL) || (dy_data->flag <= 0) || dy_data2->flag) return;
int i, d = dy_data->d, n = dy_data->n, ascend = dy_data->ascend;
for (i=d; i>n+ascend; i--)
if (fmpz_cmp(dy_data->pol+i, dy_data->upper+i) <0) {
dy_data2->n = n;
dy_data2->ascend = ascend;
_fmpz_vec_set(dy_data2->pol, dy_data->pol, d+1);
_fmpz_vec_set(dy_data2->upper, dy_data->upper, d+1);
fmpq_mat_set(dy_data2->power_sums, dy_data->power_sums);
fmpq_mat_set(dy_data2->hankel_dets, dy_data->hankel_dets);
if (dy_data->q_is_1) {
fmpq_mat_set(dy_data2->hausdorff_sums1, dy_data->hausdorff_sums1);
fmpq_mat_set(dy_data2->hausdorff_sums2, dy_data->hausdorff_sums2);
}
fmpz_set(dy_data2->upper+i, dy_data2->pol+i);
dy_data->ascend = i-n;
dy_data2->flag = 1; // This process can now itself be split.
return;
}
return;
}
/* Memory deallocation. */
void ps_static_clear(ps_static_data_t *st_data) {
if (st_data == NULL) return;
int i, d = st_data->d;
fmpz_clear(st_data->lead);
fmpz_clear(st_data->q);
_fmpz_vec_clear(st_data->cofactor, 3);
fmpz_mat_clear(st_data->binom_mat);
_fmpq_vec_clear(st_data->f, d+1);
_fmpz_vec_clear(st_data->modlist, d+1);
for (i=0; i<=d; i++) {
fmpq_mat_clear(st_data->hausdorff_mats[i]);
fmpq_mat_clear(st_data->sum_mats[i]);
}
free(st_data->hausdorff_mats);
free(st_data->sum_mats);
free(st_data);
}
void ps_dynamic_clear(ps_dynamic_data_t *dy_data) {
if (dy_data == NULL) return;
int d = dy_data->d;
_fmpz_vec_clear(dy_data->pol, d+1);
_fmpz_vec_clear(dy_data->sympol, 2*d+3);
_fmpz_vec_clear(dy_data->upper, d+1);
fmpq_mat_clear(dy_data->power_sums);
fmpq_mat_clear(dy_data->sum_prod);
fmpq_mat_clear(dy_data->hankel_mat);
fmpq_mat_clear(dy_data->hankel_dets);
fmpq_mat_clear(dy_data->hausdorff_prod);
fmpq_mat_clear(dy_data->hausdorff_sums1);
fmpq_mat_clear(dy_data->hausdorff_sums2);
_fmpz_vec_clear(dy_data->w, dy_data->wlen);
_fmpq_vec_clear(dy_data->w2, dy_data->w2len);
free(dy_data);
}
/* Subroutines to adjust lower and upper bounds within set_range_from_power_sums.
These use t0z, t0q, t4q as persistent scratch space.
The pair (val1, val2) stands for val1 + val2*sqrt(q);
passing NULL for val2 is a faster variant of passing 0.
Usage: if g is a monic linear function of the k-th power sum, then
set_upper(g) or change_upper(g) imposes the condition g >= 0;
set_lower(g) or change_lower(g) imposes the condition g <= 0.
*/
#define STATE lower, upper, q, f, t0z, t0q, t4q
#define STATE_DECLARE fmpz_t lower, fmpz_t upper, fmpz_t q, fmpq_t f, fmpz_t t0z, fmpq_t t0q, fmpq_t t4q
void set_lower(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_ceil(lower, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_ceil_quad(lower, t0q, t4q, q);
}
}
void set_upper(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_floor(upper, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_floor_quad(upper, t0q, t4q, q);
}
}
void change_lower(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_ceil(t0z, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_ceil_quad(t0z, t0q, t4q, q);
}
if (fmpz_cmp(t0z, lower) > 0) fmpz_set(lower, t0z);
}
void change_upper(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_floor(t0z, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_floor_quad(t0z, t0q, t4q, q);
}
if (fmpz_cmp(t0z, upper) < 0) fmpz_set(upper, t0z);
}
void change_lower_strict(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_floor(t0z, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_floor_quad(t0z, t0q, t4q, q);
}
fmpz_add_ui(t0z, t0z, 1);
if (fmpz_cmp(t0z, lower) > 0) fmpz_set(lower, t0z);
}
void change_upper_strict(const fmpq_t val1, const fmpq_t val2, STATE_DECLARE) {
fmpq_div(t0q, val1, f);
if (val2==NULL) fmpq_ceil(t0z, t0q);
else {
fmpq_div(t4q, val2, f);
fmpq_ceil_quad(t0z, t0q, t4q, q);
}
fmpz_sub_ui(t0z, t0z, 1);
if (fmpz_cmp(t0z, upper) < 0) fmpz_set(upper, t0z);
}
/* Impose the condition that val1*val3 >= val2, assuming that val1 is a linear
monic function of the k-th power sum and val2, val3 do not depend on this sum. */
void impose_quadratic_condition(const fmpq_t val1, const fmpq_t val2,
const fmpq_t val3, STATE_DECLARE) {
int s = fmpq_sgn(val3);
if (s) {
fmpq_mul(t0q, val2, val2);
fmpq_div(t0q, t0q, val3);
fmpq_sub(t0q, val1, t0q);
if (s>0) change_upper(t0q, NULL, STATE);
else change_lower(t0q, NULL, STATE);
}
}
/* The following is the key subroutine: given some initial coefficients, compute
a lower and upper bound for the next coefficient. Return 1 iff the resulting
interval is nonempty.
*/
int set_range_from_power_sums(ps_static_data_t *st_data,
ps_dynamic_data_t *dy_data) {
int i, j, r;
int d = st_data->d;
int n = dy_data->n;
int k = d+1-n;
int q_is_1 = dy_data->q_is_1;
fmpz *modulus = st_data->modlist+n-1;
fmpz *pol = dy_data->pol;
fmpz *q = st_data->q;
fmpq *f = (fmpq *)(st_data->f+n-1);
fmpq *t;
/* Allocate temporary variables from persistent scratch space. */
fmpz *tpol = dy_data->w;
fmpz *tpol2 = dy_data->w+d+1;
fmpz *t0z = dy_data->w+3*d+5;
fmpz *t1z = dy_data->w+3*d+6;
fmpz *t2z = dy_data->w+3*d+7;
fmpz *lower = dy_data->w+3*d+8;
fmpz *upper = dy_data->w+3*d+9;
fmpq *t0q = dy_data->w2;
fmpq *t1q = dy_data->w2+1;
fmpq *t2q = dy_data->w2+2;
fmpq *t3q = dy_data->w2+3;
fmpq *t4q = dy_data->w2+4;
/* If k>d, no further coefficients to bound. */
if (k>d) return(1);
/* Update power_sums[k]. */
t = fmpq_mat_entry(dy_data->power_sums, k, 0);
fmpq_set_si(t, -k, 1);
fmpq_mul_fmpz(t, t, pol+d-k);
for (i=1; i<k; i++) {
fmpq_set_si(t0q, -1, 1);
fmpq_mul_fmpz(t0q, t0q, pol+d-i);
fmpq_addmul(t, t0q, fmpq_mat_entry(dy_data->power_sums, k-i, 0));
}
fmpq_div_fmpz(t, t, pol+d);
/* Condition: the k-th symmetrized power sum must lie in [-2*sqrt(q), 2*sqrt(q)]. */
fmpq_mat_mul(dy_data->sum_prod, st_data->sum_mats[k], dy_data->power_sums);
t = fmpq_mat_entry(dy_data->sum_prod, 0, 0);
fmpq_set_si(t1q, 2*d, 1);
if (!q_is_1) {
fmpz_pow_ui(t0z, q, k/2);
fmpq_mul_fmpz(t1q, t1q, t0z);
}
if (k%2==0) {
fmpq_sub(t0q, t, t1q);
set_lower(t0q, NULL, STATE);
fmpq_add(t0q, t, t1q);
set_upper(t0q, NULL, STATE);
} else {
set_upper(t, t1q, STATE);
fmpq_neg(t1q, t1q);
set_lower(t, t1q, STATE);
}
/* Compute the divided (n-1)-st derivative of pol, answer in tpol. */
for (i=0; i<=k; i++)
fmpz_mul(tpol+i, fmpz_mat_entry(st_data->binom_mat, n-1+i, n-1), pol+n-1+i);
/* Condition: Descartes' rule of signs applies at -2*sqrt(q), +2*sqrt(q).
This is only a new condition for the evaluations at these points. */
fmpq_set_si(t3q, -k, 1);
fmpq_div_fmpz(t3q, t3q, pol+d);
for (i=0; 2*i <= k; i++) fmpz_mul_2exp(tpol2+i, tpol+2*i, 2*i);
_fmpz_poly_evaluate_fmpz(t0z, tpol2, (k+2) / 2, q);
fmpq_mul_fmpz(t1q, t3q, t0z);
for (i=0; 2*i+1 <= k; i++) fmpz_mul_2exp(tpol2+i, tpol+2*i+1, 2*i+1);
_fmpz_poly_evaluate_fmpz(t0z, tpol2, (k+1) / 2, q);
fmpq_mul_fmpz(t2q, t3q, t0z);
/* If checking for squarefree, shear endpoints off the range. */
if (st_data->force_squarefree) {
change_lower_strict(t1q, t2q, STATE);
fmpq_neg(t2q, t2q);
if (k%2==1) change_upper_strict(t1q, t2q, STATE);
else change_lower_strict(t1q, t2q, STATE);
}
else {
change_lower(t1q, t2q, STATE);
fmpq_neg(t2q, t2q);
if (k%2==1) change_upper(t1q, t2q, STATE);
else change_lower(t1q, t2q, STATE);
}
if (fmpz_cmp(lower, upper) > 0) return(0);
/* Update Hankel matrices. */
if (k%2==0) {
fmpq_mat_one(dy_data->hankel_mat);
for (i=0; i<=k/2; i++)
for (j=0; j<=k/2; j++)
fmpq_set(fmpq_mat_entry(dy_data->hankel_mat, i, j),
fmpq_mat_entry(dy_data->power_sums, i+j, 0));
fmpq_mat_det(t0q, dy_data->hankel_mat);
t = fmpq_mat_entry(dy_data->hankel_dets, k/2-1, 0);
fmpq_set(fmpq_mat_entry(dy_data->hankel_dets, k/2, 0), t0q);
}
/* If modulus==0, then return 1 iff [lower, upper] contains 0
and the Rolle condition is satisfied.
*/
if (fmpz_is_zero(modulus)) {
if ((fmpz_sgn(lower) > 0) || (fmpz_sgn(upper) < 0) ||
!_fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree,
NULL, NULL)) return(0);
fmpz_zero(lower);
fmpz_zero(upper);
return(1);
} else
if (fmpz_cmp(lower, upper) > 0) return(0);
/* Condition: nonnegativity of the Hankel determinant.
TODO: reimplement this as a subresultant. */
if (k%2==0) {
if (fmpq_sgn(t) > 0) {
fmpq_div(t0q, t0q, t);
change_upper(t0q, NULL, STATE);
}
else if (st_data->force_squarefree || fmpq_sgn(t0q)) return(0);
else change_upper(fmpq_mat_entry(dy_data->power_sums, k, 0), NULL, STATE);
if (fmpz_cmp(lower, upper) > 0) return(0);
}
/* Condition: the Hausdorff moment criterion for having roots in [-2, 2].
TODO: also implement the truncated moment condition. */
fmpq_mat_mul(dy_data->hausdorff_prod, st_data->hausdorff_mats[k], dy_data->power_sums);
for (i=0; i<=k; i++) {
fmpq_set(t1q, fmpq_mat_entry(dy_data->hausdorff_prod, 2*i, 0));
fmpq_set(t2q, fmpq_mat_entry(dy_data->hausdorff_prod, 2*i+1, 0));
if (i%2==0) change_upper(t1q, t2q, STATE);
else change_lower(t1q, t2q, STATE);
if (q_is_1) {
fmpq_set(fmpq_mat_entry(dy_data->hausdorff_sums1, k, i), t1q);
fmpq_set(fmpq_mat_entry(dy_data->hausdorff_sums2, k, i), t2q);
}
}
if (fmpz_cmp(lower, upper) > 0) return(0);
/* Condition: log convexity based on Cauchy-Schwarz. */
/* TODO: extend to q != 1 without losing too much efficiency. */
if (q_is_1) {
for (i=0; i<=k-2; i++) {
fmpq_add(t1q, fmpq_mat_entry(dy_data->hausdorff_sums1, k, i),
fmpq_mat_entry(dy_data->hausdorff_sums2, k, i));
fmpq_add(t2q, fmpq_mat_entry(dy_data->hausdorff_sums1, k-1, i),
fmpq_mat_entry(dy_data->hausdorff_sums2, k-1, i));
fmpq_add(t3q, fmpq_mat_entry(dy_data->hausdorff_sums1, k-2, i),
fmpq_mat_entry(dy_data->hausdorff_sums2, k-2, i));
impose_quadratic_condition(t1q, t2q, t3q, STATE);
}
for (i=2; i<=k; i++) {
fmpq_add(t1q, fmpq_mat_entry(dy_data->hausdorff_sums1, k, i),
fmpq_mat_entry(dy_data->hausdorff_sums2, k, i));
fmpq_add(t2q, fmpq_mat_entry(dy_data->hausdorff_sums1, k-1, i-1),
fmpq_mat_entry(dy_data->hausdorff_sums2, k-1, i-1));
fmpq_add(t3q, fmpq_mat_entry(dy_data->hausdorff_sums1, k-2, i-2),
fmpq_mat_entry(dy_data->hausdorff_sums2, k-2, i-2));
impose_quadratic_condition(t1q, t2q, t3q, STATE);
}
}
r = fmpz_cmp(lower, upper);
if (r>0) return(0);
/* Check the Rolle condition at the midpoint. If it holds, perform a binary
search on the left endpoint; otherwise, do a linear search. */
if (r) {
fmpz_add(t0z, lower, upper);
fmpz_fdiv_q_2exp(t0z, t0z, 1);
r = _fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree, t0z, modulus);
}
if (r) {
fmpz_set(t2z, t0z);
while (fmpz_cmp(lower, t0z)) {
fmpz_add(t1z, lower, t0z);
fmpz_fdiv_q_2exp(t1z, t1z, 1);
r = _fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree, t1z, modulus);
if (r) fmpz_set(t0z, t1z);
else fmpz_add_ui(lower, t1z, 1);
}
} else {
r = _fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree, lower, modulus);
while (!r) {
fmpz_add_ui(lower, lower, 1);
if (fmpz_cmp(lower, upper) > 0) return(0);
r = _fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree, lower, modulus);
}
if (fmpz_cmp(lower, t0z)<0) fmpz_sub_ui(upper, t0z, 1);
fmpz_set(t2z, lower);
}
/* Now do a binary search on the right endpoint. */
while (fmpz_cmp(t2z, upper)) {
fmpz_add(t1z, t2z, upper);
fmpz_cdiv_q_2exp(t1z, t1z, 1);
r = _fmpz_poly_all_real_roots(tpol, k+1, tpol2, st_data->force_squarefree, t1z, modulus);
if (r) fmpz_set(t2z, t1z);
else fmpz_sub_ui(upper, t1z, 1);
}
/* Set the new upper bound. */
fmpz_mul(upper, upper, modulus);
fmpz_add(dy_data->upper+n-1, pol+n-1, upper);
/* Set the new polynomial value. */
fmpz_addmul(pol+n-1, lower, modulus);
/* Correct the k-th power sum and related quantities. */
t1q = fmpq_mat_entry(dy_data->power_sums, k, 0);
fmpq_mul_fmpz(t0q, f, lower);
fmpq_sub(t1q, t1q, t0q);
if (q_is_1) for (i=0; i<=k; i++) {
t1q = fmpq_mat_entry(dy_data->hausdorff_sums1, k, i);
fmpq_sub(t1q, t1q, t0q);
}
if (k%2==0) {
t1q = fmpq_mat_entry(dy_data->hankel_dets, k/2, 0);
fmpq_submul(t1q, fmpq_mat_entry(dy_data->hankel_dets, k/2-1, 0), t0q);
}
return(1);
}
/* Increment the current moving counter and update stored data to match. */
void step_forward(ps_static_data_t *st_data, ps_dynamic_data_t *dy_data, int n) {
int d = st_data->d, k = d-n;
fmpz *pol = dy_data->pol;
fmpq *tq = fmpq_mat_entry(dy_data->power_sums, k, 0);
int j;
fmpz_add(pol+n, pol+n, st_data->modlist+n);
fmpq_sub(tq, tq, st_data->f+n);
if (dy_data->q_is_1) for (j=0; j<=k; j++) {
tq = fmpq_mat_entry(dy_data->hausdorff_sums1, k, j);
fmpq_sub(tq, tq, st_data->f+n);
}
if (k%2==0)
fmpq_submul(fmpq_mat_entry(dy_data->hankel_dets, k/2, 0),
st_data->f+n, fmpq_mat_entry(dy_data->hankel_dets, k/2-1, 0));
}
/* Return value sent back in dy_data->flag:
1: in process
2: found a solution
0: tree exhausted
-1: maximum number of nodes reached
*/
void next_pol(ps_static_data_t *st_data, ps_dynamic_data_t *dy_data, int max_steps) {
int d = st_data->d;
int node_limit = st_data->node_limit;
fmpz *modlist = st_data->modlist;
int ascend = dy_data->ascend;
int n = dy_data->n;
int q_is_1 = dy_data->q_is_1;
long node_count = dy_data->node_count;
fmpz *upper = dy_data->upper;
fmpz *pol = dy_data->pol;
fmpz *sympol = dy_data->sympol;
fmpz *temp = dy_data->w;
int i, j, flag = 1, count_steps = 0;
if (dy_data==NULL || !dy_data->flag) return; // No work assigned to this process
if (n>d) return;
dy_data->flag = 0; // Prevent work-stealing while this process is running
while ((flag==1) && (count_steps <= max_steps)) {
count_steps += 1;
if (ascend) { // Ascend the tree and step forward as needed.
n += ascend;
if (n>d) flag = 0; // This process is complete.
else {
ascend = (fmpz_is_zero(modlist+n) || (fmpz_cmp(pol+n, upper+n) >= 0));
if (!ascend) step_forward(st_data, dy_data, n);
}
} else if (n < 0) { // Return a solution.
_fmpz_vec_zero(sympol, 2*d+3);
for (i=0; i<=d; i++) {
fmpz_one(temp);
for (j=0; j<=i; j++) {
fmpz_addmul(sympol+d+i-2*j, pol+i, temp);
if (j<i) {
fmpz_mul(temp, temp, st_data->q);
fmpz_mul_si(temp, temp, i-j);
fmpz_divexact_si(temp, temp, j+1);
}
}
}
_fmpz_vec_scalar_mul_si(sympol, sympol, 2*d+1, st_data->sign);
_fmpz_poly_mul_KS(sympol, sympol, 2*d+1, st_data->cofactor, 3);
ascend = 1;
flag = 2;
} else { // Compute children of the current node.
dy_data->n = n;
ascend = !set_range_from_power_sums(st_data, dy_data);
n -= 1;
if (ascend) {
node_count += 1;
if (node_limit != -1 && node_count >= node_limit) flag = -1;
}
}
}
dy_data->ascend = ascend;
dy_data->n = n;
dy_data->node_count = node_count;
dy_data->flag = flag;
}