-
Notifications
You must be signed in to change notification settings - Fork 0
/
relationship_phrase_detection.py
143 lines (116 loc) · 6.47 KB
/
relationship_phrase_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from visual_relationship_dataset import *
import os
import scipy.io as sio
from PIL import Image
import copy
from refine_predictions import refine_equiv
np.set_printoptions(precision=2)
np.set_printoptions(threshold=np.inf)
cwd = os.getcwd()
# swith between GPU and CPU
config = tf.ConfigProto(device_count={'GPU': 1})
img_dir = cwd + '/data/sg_test_images'
# Load training data for prio statistics on the dataset
_, _, _, triples_of_train_data, _, _, _ = get_data("train", True)
# Computing positive and negative examples for predicates and types
idxs_of_positive_examples_of_predicates = {}
for predicate in selected_predicates:
idxs_of_positive_examples_of_predicates[predicate] = \
np.where(predicates[triples_of_train_data[:, -1]] == predicate)[0]
prior_stats = np.array([len(idxs_of_positive_examples_of_predicates[pred]) for pred in selected_predicates])
prior_freq = np.true_divide(prior_stats, np.sum(prior_stats))
image_path = sio.loadmat(cwd + '/Visual-Relationship-Detection-master/data/imagePath.mat')
object_detection = sio.loadmat(cwd + '/Visual-Relationship-Detection-master/data/objectDetRCNN.mat')
detection_bboxes = object_detection['detection_bboxes']
detection_labels = object_detection['detection_labels']
detection_confs = object_detection['detection_confs']
for img_id in range(len(detection_bboxes[0])):
if len(detection_bboxes[0][img_id]) > 0:
assert np.all(detection_bboxes[0][img_id][:, 0] < detection_bboxes[0][img_id][:, 2])
assert np.all(detection_bboxes[0][img_id][:, 1] < detection_bboxes[0][img_id][:, 3])
features_detected_bb = []
obj_bboxes_ours = []
sub_bboxes_ours = []
obj_labels_ours = []
sub_labels_ours = []
semantic_feat_vect = np.zeros(len(types))
for pic_idx in range(detection_bboxes.shape[1]):
detection_bboxes[0, pic_idx] = detection_bboxes[0, pic_idx].astype(np.float)
features_per_image = np.empty((0, 2 * number_of_features + number_of_extra_features))
obj_bboxes_ours_per_image = np.array([]).reshape(0, 4)
sub_bboxes_ours_per_image = np.array([]).reshape(0, 4)
obj_label_per_image = np.array([])
sub_label_per_image = np.array([])
# normalize data
if len(detection_bboxes[0, pic_idx]) > 0:
img = Image.open(os.path.join(img_dir, image_path['imagePath'][0, pic_idx][0]).replace('png', 'jpg'))
width, height = img.size
normalized_detection_bboxes = copy.deepcopy(detection_bboxes)
copy.deepcopy
normalized_detection_bboxes[0, pic_idx][:, -4] /= width
normalized_detection_bboxes[0, pic_idx][:, -3] /= height
normalized_detection_bboxes[0, pic_idx][:, -2] /= width
normalized_detection_bboxes[0, pic_idx][:, -1] /= height
for bb1_idx in range(len(detection_bboxes[0, pic_idx])):
for bb2_idx in range(len(detection_bboxes[0, pic_idx])):
if bb1_idx != bb2_idx:
bb1 = normalized_detection_bboxes[0, pic_idx][bb1_idx]
bb2 = normalized_detection_bboxes[0, pic_idx][bb2_idx]
sub_label_per_image = np.append(sub_label_per_image, detection_labels[0, pic_idx][bb1_idx, 0])
obj_label_per_image = np.append(obj_label_per_image, detection_labels[0, pic_idx][bb2_idx, 0])
feat_vect_bb1 = np.hstack((semantic_feat_vect, bb1))
feat_vect_bb2 = np.hstack((semantic_feat_vect, bb2))
feat_vect_bb1[detection_labels[0, pic_idx][bb1_idx]] = detection_confs[0, pic_idx][bb1_idx]
feat_vect_bb2[detection_labels[0, pic_idx][bb2_idx]] = detection_confs[0, pic_idx][bb2_idx]
feat_vec_pair = np.hstack((feat_vect_bb1, feat_vect_bb2, computing_extended_features(bb1, bb2)))
features_per_image = np.vstack((features_per_image, feat_vec_pair[np.newaxis, :]))
sub_bboxes_ours_per_image = np.vstack(
(sub_bboxes_ours_per_image, detection_bboxes[0, pic_idx][bb1_idx]))
obj_bboxes_ours_per_image = np.vstack(
(obj_bboxes_ours_per_image, detection_bboxes[0, pic_idx][bb2_idx]))
features_detected_bb.append(features_per_image)
obj_bboxes_ours.append(obj_bboxes_ours_per_image)
sub_bboxes_ours.append(sub_bboxes_ours_per_image)
obj_labels_ours.append(obj_label_per_image)
sub_labels_ours.append(sub_label_per_image)
model_list = [
"models/RWFN_KB_wc_" + str(NUM_ITERATION_TRAIN) + ".ckpt",
"models/RWFN_KB_nc_" + str(NUM_ITERATION_TRAIN) + ".ckpt"]
for model_type in model_list:
model = model_type
obj_bboxes_ours_output = []
sub_bboxes_ours_output = []
model_label = model.split("/")[-1][:-5]
print model.upper()
predicted_predicates_values_tensor = tf.concat(
[isInRelation[predicate].tensor() for predicate in selected_predicates], 1)
saver = tf.train.Saver()
sess = tf.Session(config=config)
saver.restore(sess, model)
rlp_confs_ours = []
rlp_labels_ours = []
for pic_idx in range(detection_bboxes.shape[1]):
if pic_idx % 100 == 0:
print "Eval img", pic_idx
values_of_predicates = np.array([], dtype=np.float32).reshape(0, 70)
values_of_predicates = sess.run(predicted_predicates_values_tensor,
{pairs_of_objects.tensor: features_detected_bb[pic_idx]})
values_of_predicates = refine_equiv(values_of_predicates, selected_predicates, "max")
values_of_predicates = np.multiply(values_of_predicates, prior_freq)
conf_predicates_per_image = values_of_predicates.flatten('F')
sub_bboxes_ours_output.append(np.tile(sub_bboxes_ours[pic_idx], (len(selected_predicates), 1)))
obj_bboxes_ours_output.append(np.tile(obj_bboxes_ours[pic_idx], (len(selected_predicates), 1)))
label_predicates_per_image = np.hstack(
(np.tile(sub_labels_ours[pic_idx], len(selected_predicates))[:, np.newaxis],
np.repeat(np.array(range(1, len(selected_predicates) + 1)), len(features_detected_bb[pic_idx]))[:,
np.newaxis],
np.tile(obj_labels_ours[pic_idx], len(selected_predicates))[:, np.newaxis]))
rlp_confs_ours.append(conf_predicates_per_image[:, np.newaxis])
rlp_labels_ours.append(label_predicates_per_image)
sess.close()
sio.savemat(
cwd + "/Visual-Relationship-Detection-master/results_RWFN/relationship_det_result_" + model_label + ".mat",
{'sub_bboxes_ours': sub_bboxes_ours_output,
'obj_bboxes_ours': obj_bboxes_ours_output,
'rlp_confs_ours': rlp_confs_ours,
'rlp_labels_ours': rlp_labels_ours})