diff --git a/.github/workflows/render-README.yaml b/.github/workflows/render-README.yaml index cf80b1b..8253260 100644 --- a/.github/workflows/render-README.yaml +++ b/.github/workflows/render-README.yaml @@ -21,7 +21,7 @@ jobs: - uses: r-lib/actions/setup-r-dependencies@v2 - uses: r-lib/actions/setup-pandoc@v2 - name: install CRAN packages - run: Rscript -e 'install.packages(c("rmarkdown","ggplot2", "dplyr", "purrr", "remotes", "devtools", "BiocManager", "Seurat"), force = TRUE)' + run: Rscript -e 'install.packages(c("rmarkdown", "ggplot2", "dplyr", "purrr", "remotes", "devtools", "BiocManager", "Seurat"), force = TRUE)' - name: Extra dependencies id: extra-deps run: | @@ -36,6 +36,8 @@ jobs: run: Rscript -e 'remotes::install_github("jr-leary7/scLANE")' - name: render README run: Rscript -e 'rmarkdown::render("README.Rmd", output_format = "github_document", output_file = "README.md")' + - name: clean up README.md + run: Rscript -e 'lines <- readLines("README.md"); lines <- lines[!grepl("^====+$", lines)]; writeLines(lines, "README.md")' - name: commit rendered README run: | git config --local user.name "jr-leary7" diff --git a/README.Rmd b/README.Rmd index ba4817f..994e6c7 100644 --- a/README.Rmd +++ b/README.Rmd @@ -34,7 +34,7 @@ knitr::opts_chunk$set(warning = FALSE, [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) -## Installation +# Installation You can install the most recent version of `scLANE` using: @@ -42,7 +42,7 @@ You can install the most recent version of `scLANE` using: remotes::install_github("jr-leary7/scLANE") ``` -## Model structure +# Model structure The `scLANE` package enables users to accurately determine differential expression of genes over pseudotime or latent time, and to characterize gene's dynamics using interpretable model coefficients. `scLANE` builds upon the `marge` modeling framework([GitHub](https://github.com/JakubStats/marge), [paper](https://doi.org/10.1080/10618600.2017.1360780)), allowing users to characterize their trajectory's effects on gene expression using negative binomial GLMs, GEEs, or GLMMs depending on the experimental design & biological questions of interest. This modeling framework is an extension of the [Multivariate Adapative Regression Splines (MARS)](https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline) method, which builds nonlinear models out of piecewise linear components. `scLANE` is agnostic with respect to the ordering estimation method used, and can be implemented downstream of any pseudotime or RNA velocity method. diff --git a/README.md b/README.md index 2e199f0..fbec11f 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ -================ + - [Installation](#installation) - [Model structure](#model-structure) @@ -28,7 +28,7 @@ commit](https://img.shields.io/github/last-commit/jr-leary7/scLANE/main?color=da MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) -## Installation +# Installation You can install the most recent version of `scLANE` using: @@ -36,7 +36,7 @@ You can install the most recent version of `scLANE` using: remotes::install_github("jr-leary7/scLANE") ``` -## Model structure +# Model structure The `scLANE` package enables users to accurately determine differential expression of genes over pseudotime or latent time, and to characterize @@ -171,7 +171,7 @@ scLANE_models_glm <- testDynamic(sim_data, #> Registered S3 method overwritten by 'bit': #> method from #> print.ri gamlss -#> scLANE testing in GLM mode completed for 100 genes across 1 lineage in 26.604 secs +#> scLANE testing in GLM mode completed for 100 genes across 1 lineage in 26.593 secs ``` After the function finishes running, we use `getResultsDE()` to generate @@ -218,7 +218,7 @@ scLANE_models_gee <- testDynamic(sim_data, cor.structure = "ar1", n.cores = 6L, verbose = FALSE) -#> scLANE testing in GEE mode completed for 100 genes across 1 lineage in 1.499 mins +#> scLANE testing in GEE mode completed for 100 genes across 1 lineage in 1.503 mins ``` We again generate the table of DE test results. The variance of the @@ -264,7 +264,7 @@ scLANE_models_glmm <- testDynamic(sim_data, id.vec = sim_data$subject, n.cores = 6L, verbose = FALSE) -#> scLANE testing in GLMM mode completed for 100 genes across 1 lineage in 3.386 mins +#> scLANE testing in GLMM mode completed for 100 genes across 1 lineage in 3.314 mins ``` **Note:** The GLMM mode is still under development, as we are working on