-
Notifications
You must be signed in to change notification settings - Fork 71
/
python.rs
451 lines (369 loc) · 16.4 KB
/
python.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
static USAGE: &str = r#"
Create a new computed column or filter rows by evaluating a python expression on
every row of a CSV file.
The executed Python has 4 ways to reference cell values (as strings):
1. Directly by using column name (e.g. amount) as a local variable. If a column
name has spaces and other special characters, they are replaced with underscores
(e.g. "unit cost" -> unit_cost, "test-units/sec" -> test_units_sec)
2. Indexing cell value by column name as an attribute: col.amount
3. Indexing cell value by column name as a key: col["amount"]
4. Indexing cell value by column position: col[0]
Of course, if your input has no headers, then 4. will be the only available
option.
Some usage examples:
Sum numeric columns 'a' and 'b' and call new column 'c'
$ qsv py map c "int(a) + int(b)"
$ qsv py map c "int(col.a) + int(col['b'])"
$ qsv py map c "int(col[0]) + int(col[1])"
Use Python f-strings to calculate using multiple columns (qty, fruit & "unit cost")
and format into a new column 'formatted'
$ qsv py map formatted 'f"{qty} {fruit} cost ${(float(unit_cost) * float(qty)):.2f}"'
You can even have conditionals in your f-string:
$ qsv py map formatted \
'f"""{qty} {fruit} cost ${(float(unit_cost) * float(qty)):.2f}. Its quite {"cheap" if ((float(unit_cost) * float(qty)) < 20.0) else "expensive"}!"""'
Note how we needed to use triple double quotes for the f-string, so we can use the literals
"cheap" and "expensive" in the f-string expression.
Strip and prefix cell values
$ qsv py map prefixed "'clean_' + a.strip()"
Filter some lines based on numerical filtering
$ qsv py filter "int(a) > 45"
Load helper file with function to compute Fibonacci sequence of the column "num_col"
$ qsv py map --helper fibonacci.py fib qsv_uh.fibonacci(num_col) data.csv
Below is a detailed example of the --helper option:
Use case:
Need to calculate checksum/md5sum of some columns. First column (c1) is "id", and do md5sum of
the rest of the columns (c2, c3 and c4).
Given test.csv:
c1,c2,c3,c4
1,a2,a3,a4
2,b2,b3,b4
3,c2,c3,c4
and hashhelper.py:
import hashlib
def md5hash (*args):
s = ",".join(args)
return(hashlib.md5(s.encode('utf-8')).hexdigest())
with the following command:
$ qsv py map --helper hashhelper.py hashcol 'qsv_uh.md5hash(c2,c3,c4)' test.csv
we get:
c1,c2,c3,c4,hashcol
1,a2,a3,a4,cb675342ed940908eef0844d17c35fab
2,b2,b3,b4,7d594b33f82bdcbc1cfa6f924a84c4cd
3,c2,c3,c4,6eabbfdbfd9ab6ae7737fb2b82f6a1af
Note that qsv with the `python` feature enabled will panic on startup even if you're not
using the `py` command if Python's shared libraries are not found.
Also, the following Python modules are automatically loaded and available to the user -
builtsin, math, random & datetime. The user can import additional modules with the --helper option,
with the ability to use any python module that's installed in the current python virtualenv.
The python expression is evaluated on a per record basis.
With "py map", if the expression is invalid for a record, "<ERROR>" is returned for that record.
With "py filter", if the expression is invalid for a record, that record is not filtered.
If any record has an invalid result, an exitcode of 1 is returned and an error count is logged.
For more extensive examples, see https://github.com/jqnatividad/qsv/blob/master/tests/test_py.rs.
Usage:
qsv py map [options] -n <expression> [<input>]
qsv py map [options] <new-column> <expression> [<input>]
qsv py map --helper <file> [options] <new-column> <expression> [<input>]
qsv py filter [options] <expression> [<input>]
qsv py map --help
qsv py filter --help
qsv py --help
py argument:
<expression> Can either be a python expression, or if it starts with
"file:" or ends with ".py" - the filepath from which to
load the python expression.
Note that argument expects a SINGLE expression, and not
a full-blown python script. Use the --helper option
to load helper code that you can call from the expression.
py options:
-f, --helper <file> File containing Python code that's loaded into the
qsv_uh Python module. Functions with a return statement
in the file can be called with the prefix "qsv_uh".
The returned value is used in the map or filter operation.
-b, --batch <size> The number of rows per batch to process before
releasing memory and acquiring a new GILpool.
Set to 0 to process the entire file in one batch.
[default: 50000]
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-n, --no-headers When set, the first row will not be interpreted
as headers. Namely, it will be sorted with the rest
of the rows. Otherwise, the first row will always
appear as the header row in the output.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
-p, --progressbar Show progress bars. Not valid for stdin.
"#;
use std::{ffi::CString, fs};
use indicatif::{ProgressBar, ProgressDrawTarget};
use pyo3::{
intern,
prelude::*,
types::{PyDict, PyModule},
PyErr, PyResult, Python,
};
use serde::Deserialize;
use crate::{
config::{Config, Delimiter},
util, CliError, CliResult,
};
const HELPERS: &str = r#"
def cast_as_string(value):
if isinstance(value, str):
return value
return str(value)
def cast_as_bool(value):
return bool(value)
class QSVRow(object):
def __init__(self, headers):
self.__data = None
self.__headers = headers
self.__mapping = {h: i for i, h in enumerate(headers)}
def _update_underlying_data(self, row_data):
self.__data = row_data
def __getitem__(self, key):
if isinstance(key, int):
return self.__data[key]
return self.__data[self.__mapping[key]]
def __getattr__(self, key):
return self.__data[self.__mapping[key]]
"#;
#[derive(Deserialize)]
struct Args {
cmd_map: bool,
cmd_filter: bool,
arg_new_column: Option<String>,
arg_expression: String,
flag_batch: usize,
flag_helper: Option<String>,
arg_input: Option<String>,
flag_output: Option<String>,
flag_no_headers: bool,
flag_delimiter: Option<Delimiter>,
flag_progressbar: bool,
}
impl From<PyErr> for CliError {
fn from(err: PyErr) -> CliError {
CliError::Other(err.to_string())
}
}
pub fn run(argv: &[&str]) -> CliResult<()> {
let args: Args = util::get_args(USAGE, argv)?;
let rconfig = Config::new(args.arg_input.as_ref())
.delimiter(args.flag_delimiter)
.no_headers(args.flag_no_headers);
let mut rdr = rconfig.reader()?;
let mut wtr = Config::new(args.flag_output.as_ref()).writer()?;
let debug_flag = log::log_enabled!(log::Level::Debug);
if debug_flag {
Python::with_gil(|py| {
let msg = format!("Detected python={}", py.version());
winfo!("{msg}");
});
}
let expression = if let Some(expression_filepath) = args.arg_expression.strip_prefix("file:") {
match fs::read_to_string(expression_filepath) {
Ok(file_contents) => file_contents,
Err(e) => return fail_clierror!("Cannot load Python expression from file: {e}"),
}
} else if std::path::Path::new(&args.arg_expression)
.extension()
.is_some_and(|ext| ext.eq_ignore_ascii_case("py"))
{
match fs::read_to_string(args.arg_expression.clone()) {
Ok(file_contents) => file_contents,
Err(e) => return fail_clierror!("Cannot load .py file: {e}"),
}
} else {
args.arg_expression.clone()
};
let mut helper_text = String::new();
if let Some(helper_file) = args.flag_helper {
helper_text = match fs::read_to_string(helper_file) {
Ok(helper_file) => helper_file,
Err(e) => return fail_clierror!("Cannot load python file: {e}"),
}
}
let mut headers = rdr.headers()?.clone();
let headers_len = headers.len();
if rconfig.no_headers {
headers = csv::StringRecord::new();
for i in 0..headers_len {
headers.push_field(itoa::Buffer::new().format(i));
}
} else {
if !args.cmd_filter {
let new_column = args
.arg_new_column
.as_ref()
.ok_or("Specify new column name")?;
headers.push_field(new_column);
}
wtr.write_record(&headers)?;
}
// prep progress bar
let show_progress =
(args.flag_progressbar || util::get_envvar_flag("QSV_PROGRESSBAR")) && !rconfig.is_stdin();
let progress = ProgressBar::with_draw_target(None, ProgressDrawTarget::stderr_with_hz(5));
if show_progress {
util::prep_progress(&progress, util::count_rows(&rconfig)?);
} else {
progress.set_draw_target(ProgressDrawTarget::hidden());
}
// ensure col/header names are valid and safe python variables
let (header_vec, _) = util::safe_header_names(&headers, true, false, None, "_", false);
// amortize memory allocation by reusing record
#[allow(unused_assignments)]
let mut batch_record = csv::StringRecord::new();
let mut error_count = 0_usize;
let batch_size = if args.flag_batch == 0 {
util::count_rows(&rconfig)? as usize
} else {
args.flag_batch
};
// reuse batch buffers
let mut batch = Vec::with_capacity(batch_size);
// safety: safe to unwrap as these are statically defined
let helpers_code = CString::new(HELPERS).unwrap();
let helpers_filename = CString::new("qsv_helpers.py").unwrap();
let helpers_module_name = CString::new("qsv_helpers").unwrap();
let user_helpers_code = CString::new(helper_text)
.map_err(|e| format!("Failed to create CString from helper text: {e}"))?;
// safety: safe to unwrap as these are statically defined
let user_helpers_filename = CString::new("qsv_user_helpers.py").unwrap();
let user_helpers_module_name = CString::new("qsv_uh").unwrap();
let arg_expression = CString::new(expression)
.map_err(|e| format!("Failed to create CString from expression: {e}"))?;
let mut row_number = 0_u64;
// main loop to read CSV and construct batches.
// we batch python operations so that the GILPool does not get very large
// as we release the pool after each batch
// loop exits when batch is empty.
// see https://pyo3.rs/latest/memory.html#gil-bound-memory for more info.
'batch_loop: loop {
for _ in 0..batch_size {
match rdr.read_record(&mut batch_record) {
Ok(has_data) => {
if has_data {
batch.push(std::mem::take(&mut batch_record));
} else {
// nothing else to add to batch
break;
}
},
Err(e) => {
return fail_clierror!("Error reading file: {e}");
},
}
}
if batch.is_empty() {
// break out of infinite loop when at EOF
break 'batch_loop;
}
Python::with_gil(|py| -> PyResult<()> {
let batch_ref = &mut batch;
let helpers =
PyModule::from_code(py, &helpers_code, &helpers_filename, &helpers_module_name)?;
let batch_globals = PyDict::new(py);
let batch_locals = PyDict::new(py);
let user_helpers = PyModule::from_code(
py,
&user_helpers_code,
&user_helpers_filename,
&user_helpers_module_name,
)?;
batch_globals.set_item(intern!(py, "qsv_uh"), user_helpers)?;
// Global imports
let builtins = PyModule::import(py, "builtins")?;
let math_module = PyModule::import(py, "math")?;
let random_module = PyModule::import(py, "random")?;
let datetime_module = PyModule::import(py, "datetime")?;
batch_globals.set_item("__builtins__", builtins)?;
batch_globals.set_item("math", math_module)?;
batch_globals.set_item("random", random_module)?;
batch_globals.set_item("datetime", datetime_module)?;
let py_row = helpers
.getattr("QSVRow")?
.call1((headers.iter().collect::<Vec<&str>>(),))?;
batch_locals.set_item("col", py_row.clone())?;
let error_result = intern!(py, "<ERROR>");
for record in batch_ref.iter_mut() {
row_number += 1;
// Initializing locals
let mut row_data: Vec<&str> = Vec::with_capacity(headers_len);
// assert so the record.get() below skips bounds check
assert!(record.len() == headers_len);
header_vec
.iter()
.enumerate()
.take(headers_len)
.for_each(|(i, key)| {
let cell_value = record.get(i).unwrap_or_default();
let _ = batch_locals.set_item(key, cell_value).map_err(|e| {
error_count += 1;
if debug_flag {
log::error!(
"Failed to set item in batch_locals: {row_number}-{e:?}"
);
}
});
row_data.push(cell_value);
});
py_row.call_method1(intern!(py, "_update_underlying_data"), (row_data,))?;
let result =
match py.eval(&arg_expression, Some(&batch_globals), Some(&batch_locals)) {
Ok(r) => r,
Err(e) => {
error_count += 1;
if debug_flag {
log::error!("Expression error:{row_number}-{e:?}");
}
e.print_and_set_sys_last_vars(py);
error_result.clone().into_any()
},
};
if args.cmd_map {
let result = helpers
.getattr(intern!(py, "cast_as_string"))?
.call1((result,))?;
let value: String = result.extract()?;
record.push_field(&value);
if let Err(e) = wtr.write_record(&*record) {
// we do this since we cannot use the ? operator here
// since this closure returns a PyResult
// this is converted to a CliError::Other anyway
return Err(pyo3::PyErr::new::<pyo3::exceptions::PyIOError, _>(format!(
"cannot write record ({row_number}-{e})"
)));
}
} else if args.cmd_filter {
let result = helpers
.getattr(intern!(py, "cast_as_bool"))?
.call1((result,))?;
let include_record: bool = result.extract().unwrap_or(false);
if include_record {
if let Err(e) = wtr.write_record(&*record) {
return Err(pyo3::PyErr::new::<pyo3::exceptions::PyIOError, _>(
format!("cannot write record ({row_number}-{e})"),
));
}
}
}
}
Ok(())
})?;
if show_progress {
progress.inc(batch.len() as u64);
}
batch.clear();
} // end batch loop
if show_progress {
util::finish_progress(&progress);
}
wtr.flush()?;
if error_count > 0 {
return fail_clierror!("Python errors encountered: {error_count}");
}
Ok(())
}