-
Notifications
You must be signed in to change notification settings - Fork 0
/
rng_mt.f90
1322 lines (920 loc) · 31.7 KB
/
rng_mt.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!------------------------------------------------------------------------------------------------------------------------------------
! Merseene-Twister RNG
module mt95
! Merseene Twister pseudo-random number generator
! A C-program for MT19937, with initialization improved 2002/1/26.
! Coded by Takuji Nishimura and Makoto Matsumoto.
! Code converted to Fortran 95 by Jose Rui Faustino de Sousa
! Date: 2002-02-01
! Enhanced version by Jose Rui Faustino de Sousa
! Date: 2003-04-30
! Interface:
!
! Kinds:
! genrand_intg
! Integer kind used must be at least 32 bits.
! genrand_real
! Real kind used
!
! Types:
! genrand_state
! Internal representation of the RNG state.
! genrand_srepr
! Public representation of the RNG state. Should be used to save the RNG state.
!
! Procedures:
! assignment(=)
! Converts from type genrand_state to genrand_srepr and vice versa.
! genrand_init
! Internal RNG state initialization subroutine accepts either an genrand_intg integer
! or a vector as seed or a new state using "put=" returns the present state using
! "get=". If it is called with "get=" before being seeded with "put=" returns a state
! initialized with a default seed.
! genrand_int32
! Subroutine returns an array or scalar whose elements are random integer on the
! [0,0xffffffff] interval.
! genrand_int31
! Subroutine returns an array or scalar whose elements are random integer on the
! [0,0x7fffffff] interval.
! genrand_real1
! Subroutine returns an array or scalar whose elements are random real on the
! [0,1] interval.
! genrand_real2
! Subroutine returns an array or scalar whose elements are random real on the
! [0,1[ interval.
! genrand_real3
! Subroutine returns an array or scalar whose elements are random real on the
! ]0,1[ interval.
! genrand_res53
! Subroutine returns an array or scalar whose elements are random real on the
! [0,1[ interval with 53-bit resolution.
! Before using, initialize the state by using genrand_init( put=seed )
! This library is free software.
! This library is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
! Copyright (C) 1997, 2002 Makoto Matsumoto and Takuji Nishimura.
! Any feedback is very welcome.
! http://www.math.keio.ac.jp/matumoto/emt.html
! email: matumoto@math.keio.ac.jp
implicit none
public :: genrand_init, assignment(=)
public :: genrand_int32, genrand_int31, genrand_real1
public :: genrand_real2, genrand_real3, genrand_res53
private :: uiadd, uisub, uimlt, uidiv, uimod
private :: init_by_type, init_by_scalar, init_by_array, next_state
private :: genrand_encode, genrand_decode, genrand_load_state, genrand_dump_state
private :: genrand_int32_0d, genrand_int32_1d, genrand_int32_2d, genrand_int32_3d
private :: genrand_int32_4d, genrand_int32_5d, genrand_int32_6d, genrand_int32_7d
private :: genrand_int31_0d, genrand_int31_1d, genrand_int31_2d, genrand_int31_3d
private :: genrand_int31_4d, genrand_int31_5d, genrand_int31_6d, genrand_int31_7d
private :: genrand_real1_0d, genrand_real1_1d, genrand_real1_2d, genrand_real1_3d
private :: genrand_real1_4d, genrand_real1_5d, genrand_real1_6d, genrand_real1_7d
private :: genrand_real2_0d, genrand_real2_1d, genrand_real2_2d, genrand_real2_3d
private :: genrand_real2_4d, genrand_real2_5d, genrand_real2_6d, genrand_real2_7d
private :: genrand_real3_0d, genrand_real3_1d, genrand_real3_2d, genrand_real3_3d
private :: genrand_real3_4d, genrand_real3_5d, genrand_real3_6d, genrand_real3_7d
private :: genrand_res53_0d, genrand_res53_1d, genrand_res53_2d, genrand_res53_3d
private :: genrand_res53_4d, genrand_res53_5d, genrand_res53_6d, genrand_res53_7d
intrinsic :: selected_int_kind, selected_real_kind
integer, public, parameter :: genrand_intg = selected_int_kind( 9 )
integer, public, parameter :: genrand_real = selected_real_kind( 15 )
integer, private, parameter :: wi = genrand_intg
integer, private, parameter :: wr = genrand_real
! Period parameters
integer(kind=wi), private, parameter :: n = 624_wi
integer(kind=wi), private, parameter :: m = 397_wi
integer(kind=wi), private, parameter :: default_seed = 5489_wi
integer(kind=wi), private, parameter :: fbs = 32_wi
integer(kind=wi), private, parameter :: hbs = fbs / 2_wi
integer(kind=wi), private, parameter :: qbs = hbs / 2_wi
integer(kind=wi), private, parameter :: tbs = 3_wi * qbs
real(kind=wr), private, parameter :: p231 = 2147483648.0_wr
real(kind=wr), private, parameter :: p232 = 4294967296.0_wr
real(kind=wr), private, parameter :: p232_1 = p232 - 1.0_wr
real(kind=wr), private, parameter :: pi232 = 1.0_wr / p232
real(kind=wr), private, parameter :: pi232_1 = 1.0_wr / p232_1
real(kind=wr), private, parameter :: pi227 = 1.0_wr / 134217728.0_wr
real(kind=wr), private, parameter :: pi253 = 1.0_wr / 9007199254740992.0_wr
real(kind=wr), private, parameter :: p231d232_1 = p231 / p232_1
real(kind=wr), private, parameter :: p231_5d232 = ( p231 + 0.5_wr ) / p232
character(len=*), private, parameter :: alph = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
character(len=*), private, parameter :: sepr = "&"
integer(kind=wi), private, parameter :: alps = 62_wi
integer(kind=wi), private, parameter :: clen = ( n + 1_wi ) * 7_wi !n * ( ceiling( fbs * log( 2.0 ) / log( alps ) ) + 1 )
type, public :: genrand_state
private
logical(kind=wi) :: ini = .false._wi
integer(kind=wi) :: cnt = n+1_wi
integer(kind=wi), dimension(n) :: val = 0_wi
end type genrand_state
type, public :: genrand_srepr
character(len=clen) :: repr
end type genrand_srepr
type(genrand_state), private, save :: state
interface assignment( = )
module procedure genrand_load_state
module procedure genrand_dump_state
end interface assignment( = )
interface genrand_init
module procedure init_by_type
module procedure init_by_scalar
module procedure init_by_array
end interface genrand_init
interface genrand_int32
module procedure genrand_int32_0d
module procedure genrand_int32_1d
module procedure genrand_int32_2d
module procedure genrand_int32_3d
module procedure genrand_int32_4d
module procedure genrand_int32_5d
module procedure genrand_int32_6d
module procedure genrand_int32_7d
end interface genrand_int32
interface genrand_int31
module procedure genrand_int31_0d
module procedure genrand_int31_1d
module procedure genrand_int31_2d
module procedure genrand_int31_3d
module procedure genrand_int31_4d
module procedure genrand_int31_5d
module procedure genrand_int31_6d
module procedure genrand_int31_7d
end interface genrand_int31
interface genrand_real1
module procedure genrand_real1_0d
module procedure genrand_real1_1d
module procedure genrand_real1_2d
module procedure genrand_real1_3d
module procedure genrand_real1_4d
module procedure genrand_real1_5d
module procedure genrand_real1_6d
module procedure genrand_real1_7d
end interface genrand_real1
interface genrand_real2
module procedure genrand_real2_0d
module procedure genrand_real2_1d
module procedure genrand_real2_2d
module procedure genrand_real2_3d
module procedure genrand_real2_4d
module procedure genrand_real2_5d
module procedure genrand_real2_6d
module procedure genrand_real2_7d
end interface genrand_real2
interface genrand_real3
module procedure genrand_real3_0d
module procedure genrand_real3_1d
module procedure genrand_real3_2d
module procedure genrand_real3_3d
module procedure genrand_real3_4d
module procedure genrand_real3_5d
module procedure genrand_real3_6d
module procedure genrand_real3_7d
end interface genrand_real3
interface genrand_res53
module procedure genrand_res53_0d
module procedure genrand_res53_1d
module procedure genrand_res53_2d
module procedure genrand_res53_3d
module procedure genrand_res53_4d
module procedure genrand_res53_5d
module procedure genrand_res53_6d
module procedure genrand_res53_7d
end interface genrand_res53
contains
elemental function uiadd( a, b ) result( c )
intrinsic :: ibits, ior, ishft
integer( kind = wi ), intent( in ) :: a, b
integer( kind = wi ) :: c
integer( kind = wi ) :: a1, a2, b1, b2, s1, s2
a1 = ibits( a, 0, hbs )
a2 = ibits( a, hbs, hbs )
b1 = ibits( b, 0, hbs )
b2 = ibits( b, hbs, hbs )
s1 = a1 + b1
s2 = a2 + b2 + ibits( s1, hbs, hbs )
c = ior( ishft( s2, hbs ), ibits( s1, 0, hbs ) )
return
end function uiadd
elemental function uisub( a, b ) result( c )
intrinsic :: ibits, ior, ishft
integer( kind = wi ), intent( in ) :: a, b
integer( kind = wi ) :: c
integer( kind = wi ) :: a1, a2, b1, b2, s1, s2
a1 = ibits( a, 0, hbs )
a2 = ibits( a, hbs, hbs )
b1 = ibits( b, 0, hbs )
b2 = ibits( b, hbs, hbs )
s1 = a1 - b1
s2 = a2 - b2 + ibits( s1, hbs, hbs )
c = ior( ishft( s2, hbs ), ibits( s1, 0, hbs ) )
return
end function uisub
elemental function uimlt( a, b ) result( c )
intrinsic :: ibits, ior, ishft
integer(kind=wi), intent(in) :: a, b
integer(kind=wi) :: c
integer(kind=wi) :: a0, a1, a2, a3
integer(kind=wi) :: b0, b1, b2, b3
integer(kind=wi) :: p0, p1, p2, p3
a0 = ibits( a, 0, qbs )
a1 = ibits( a, qbs, qbs )
a2 = ibits( a, hbs, qbs )
a3 = ibits( a, tbs, qbs )
b0 = ibits( b, 0, qbs )
b1 = ibits( b, qbs, qbs )
b2 = ibits( b, hbs, qbs )
b3 = ibits( b, tbs, qbs )
p0 = a0 * b0
p1 = a1 * b0 + a0 * b1 + ibits( p0, qbs, tbs )
p2 = a2 * b0 + a1 * b1 + a0 * b2 + ibits( p1, qbs, tbs )
p3 = a3 * b0 + a2 * b1 + a1 * b2 + a0 * b3 + ibits( p2, qbs, tbs )
c = ior( ishft( p1, qbs ), ibits( p0, 0, qbs ) )
c = ior( ishft( p2, hbs ), ibits( c, 0, hbs ) )
c = ior( ishft( p3, tbs ), ibits( c, 0, tbs ) )
return
end function uimlt
elemental function uidiv( a, b ) result( c )
intrinsic :: btest, ishft
integer(kind=wi), intent(in) :: a, b
integer(kind=wi) :: c
integer(kind=wi) :: dl, rl
if ( btest( a, fbs-1 ) ) then
if ( btest( b, fbs-1 ) ) then
if ( a < b ) then
c = 0
else
c = 1
end if
else
dl = ishft( ishft( a, -1 ) / b, 1 )
rl = uisub( a, uimlt( b, dl ) )
if ( rl < b ) then
c = dl
else
c = uiadd( dl, 1 )
end if
end if
else
if ( btest( b, fbs-1 ) ) then
c = 0
else
c = a / b
end if
end if
return
end function uidiv
elemental function uimod( a, b ) result( c )
intrinsic :: modulo, btest, ishft
integer(kind=wi), intent(in) :: a, b
integer(kind=wi) :: c
integer(kind=wi) :: dl, rl
if ( btest( a, fbs-1 ) ) then
if ( btest( b, fbs-1 ) ) then
if ( a < b ) then
c = a
else
c = uisub( a, b )
end if
else
dl = ishft( ishft( a, -1 ) / b, 1 )
rl = uisub( a, uimlt( b, dl ) )
if ( rl < b ) then
c = rl
else
c = uisub( rl, b )
end if
end if
else
if ( btest( b, fbs-1 ) ) then
c = a
else
c = modulo( a, b )
end if
end if
return
end function uimod
subroutine init_by_type( put, get )
intrinsic :: present
type(genrand_state), optional, intent(in ) :: put
type(genrand_state), optional, intent(out) :: get
if ( present( put ) ) then
if ( put%ini ) state = put
else if ( present( get ) ) then
if ( .not. state%ini ) call init_by_scalar( default_seed )
get = state
else
call init_by_scalar( default_seed )
end if
return
end subroutine init_by_type
! initializes mt[N] with a seed
subroutine init_by_scalar( put )
intrinsic :: ishft, ieor, ibits
integer(kind=wi), parameter :: mult_a = 1812433253_wi !z'6C078965'
integer(kind=wi), intent(in) :: put
integer(kind=wi) :: i
state%ini = .true._wi
state%val(1) = ibits( put, 0, fbs )
do i = 2, n, 1
state%val(i) = ieor( state%val(i-1), ishft( state%val(i-1), -30 ) )
state%val(i) = uimlt( state%val(i), mult_a )
state%val(i) = uiadd( state%val(i), i-1_wi )
! See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier.
! In the previous versions, MSBs of the seed affect
! only MSBs of the array mt[].
! 2002/01/09 modified by Makoto Matsumoto
state%val(i) = ibits( state%val(i), 0, fbs )
! for >32 bit machines
end do
state%cnt = n + 1_wi
return
end subroutine init_by_scalar
! initialize by an array with array-length
! init_key is the array for initializing keys
! key_length is its length
subroutine init_by_array( put )
intrinsic :: size, max, ishft, ieor, ibits
integer(kind=wi), parameter :: seed_d = 19650218_wi !z'12BD6AA'
integer(kind=wi), parameter :: mult_a = 1664525_wi !z'19660D'
integer(kind=wi), parameter :: mult_b = 1566083941_wi !z'5D588B65'
integer(kind=wi), parameter :: msb1_d = ishft( 1_wi, fbs-1 ) !z'80000000'
integer(kind=wi), dimension(:), intent(in) :: put
integer(kind=wi) :: i, j, k, tp, key_length
call init_by_scalar( seed_d )
key_length = size( put, dim=1 )
i = 2_wi
j = 1_wi
do k = max( n, key_length ), 1, -1
tp = ieor( state%val(i-1), ishft( state%val(i-1), -30 ) )
tp = uimlt( tp, mult_a )
state%val(i) = ieor( state%val(i), tp )
state%val(i) = uiadd( state%val(i), uiadd( put(j), j-1_wi ) ) ! non linear
state%val(i) = ibits( state%val(i), 0, fbs ) ! for WORDSIZE > 32 machines
i = i + 1_wi
j = j + 1_wi
if ( i > n ) then
state%val(1) = state%val(n)
i = 2_wi
end if
if ( j > key_length) j = 1_wi
end do
do k = n-1, 1, -1
tp = ieor( state%val(i-1), ishft( state%val(i-1), -30 ) )
tp = uimlt( tp, mult_b )
state%val(i) = ieor( state%val(i), tp )
state%val(i) = uisub( state%val(i), i-1_wi ) ! non linear
state%val(i) = ibits( state%val(i), 0, fbs ) ! for WORDSIZE > 32 machines
i = i + 1_wi
if ( i > n ) then
state%val(1) = state%val(n)
i = 2_wi
end if
end do
state%val(1) = msb1_d ! MSB is 1; assuring non-zero initial array
return
end subroutine init_by_array
subroutine next_state( )
intrinsic :: ishft, ieor, btest, ibits, mvbits
integer(kind=wi), parameter :: matrix_a = -1727483681_wi !z'9908b0df'
integer(kind=wi) :: i, mld
if ( .not. state%ini ) call init_by_scalar( default_seed )
do i = 1, n-m, 1
mld = ibits( state%val(i+1), 0, 31 )
call mvbits( state%val(i), 31, 1, mld, 31 )
state%val(i) = ieor( state%val(i+m), ishft( mld, -1 ) )
if ( btest( state%val(i+1), 0 ) ) state%val(i) = ieor( state%val(i), matrix_a )
end do
do i = n-m+1, n-1, 1
mld = ibits( state%val(i+1), 0, 31 )
call mvbits( state%val(i), 31, 1, mld, 31 )
state%val(i) = ieor( state%val(i+m-n), ishft( mld, -1 ) )
if ( btest( state%val(i+1), 0 ) ) state%val(i) = ieor( state%val(i), matrix_a )
end do
mld = ibits( state%val(1), 0, 31 )
call mvbits( state%val(n), 31, 1, mld, 31 )
state%val(n) = ieor( state%val(m), ishft( mld, -1 ) )
if ( btest( state%val(1), 0 ) ) state%val(n) = ieor( state%val(n), matrix_a )
state%cnt = 1_wi
return
end subroutine next_state
elemental subroutine genrand_encode( chr, val )
intrinsic :: len
character(len=*), intent(out) :: chr
integer(kind=wi), intent(in ) :: val
integer(kind=wi) :: i, m, d
d = val
chr = ""
do i = 1, len( chr ), 1
m = uimod( d, alps ) + 1
chr(i:i) = alph(m:m)
d = uidiv( d, alps )
if ( d == 0 ) exit
end do
return
end subroutine genrand_encode
elemental subroutine genrand_decode( val, chr )
intrinsic :: len, len_trim, trim, adjustl, scan
integer(kind=wi), intent(out) :: val
character(len=*), intent(in ) :: chr
integer(kind=wi) :: i, e, p
character(len=len(chr)) :: c
e = 1
c = trim( adjustl( chr ) )
val = 0
do i = 1, len_trim( c ), 1
p = scan( alph, c(i:i) ) - 1
if( p >= 0 ) then
val = uiadd( val, uimlt( p, e ) )
e = uimlt( e, alps )
end if
end do
return
end subroutine genrand_decode
elemental subroutine genrand_load_state( stt, rpr )
intrinsic :: scan
type(genrand_state), intent(out) :: stt
type(genrand_srepr), intent(in ) :: rpr
integer(kind=wi) :: i, j
character(len=clen) :: c
i = 1
c = rpr%repr
do
j = scan( c, sepr )
if ( j /= 0 ) then
call genrand_decode( stt%val(i), c(:j-1) )
i = i + 1
c = c(j+1:)
else
exit
end if
end do
call genrand_decode( stt%cnt, c )
stt%ini = .true._wi
return
end subroutine genrand_load_state
elemental subroutine genrand_dump_state( rpr, stt )
intrinsic :: len_trim
type(genrand_srepr), intent(out) :: rpr
type(genrand_state), intent(in ) :: stt
integer(kind=wi) :: i, j
j = 1
rpr%repr = ""
do i = 1, n, 1
call genrand_encode( rpr%repr(j:), stt%val(i) )
j = len_trim( rpr%repr ) + 1
rpr%repr(j:j) = sepr
j = j + 1
end do
call genrand_encode( rpr%repr(j:), stt%cnt )
return
end subroutine genrand_dump_state
! generates a random number on [0,0xffffffff]-interval
subroutine genrand_int32_0d( y )
intrinsic :: ieor, iand, ishft
integer(kind=wi), parameter :: temper_a = -1658038656_wi !z'9D2C5680'
integer(kind=wi), parameter :: temper_b = -272236544_wi !z'EFC60000'
integer(kind=wi), intent(out) :: y
if ( state%cnt > n ) call next_state( )
y = state%val(state%cnt)
state%cnt = state%cnt + 1_wi
! Tempering
y = ieor( y, ishft( y, -11 ) )
y = ieor( y, iand( ishft( y, 7 ), temper_a ) )
y = ieor( y, iand( ishft( y, 15 ), temper_b ) )
y = ieor( y, ishft( y, -18 ) )
return
end subroutine genrand_int32_0d
subroutine genrand_int32_1d( y )
intrinsic :: size
integer(kind=wi), dimension(:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 1 ), 1
call genrand_int32_0d( y(i) )
end do
return
end subroutine genrand_int32_1d
subroutine genrand_int32_2d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 2 ), 1
call genrand_int32_1d( y(:,i) )
end do
return
end subroutine genrand_int32_2d
subroutine genrand_int32_3d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 3 ), 1
call genrand_int32_2d( y(:,:,i) )
end do
return
end subroutine genrand_int32_3d
subroutine genrand_int32_4d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 4 ), 1
call genrand_int32_3d( y(:,:,:,i) )
end do
return
end subroutine genrand_int32_4d
subroutine genrand_int32_5d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 5 ), 1
call genrand_int32_4d( y(:,:,:,:,i) )
end do
return
end subroutine genrand_int32_5d
subroutine genrand_int32_6d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 6 ), 1
call genrand_int32_5d( y(:,:,:,:,:,i) )
end do
return
end subroutine genrand_int32_6d
subroutine genrand_int32_7d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 7 ), 1
call genrand_int32_6d( y(:,:,:,:,:,:,i) )
end do
return
end subroutine genrand_int32_7d
! generates a random number on [0,0x7fffffff]-interval
subroutine genrand_int31_0d( y )
intrinsic :: ishft
integer(kind=wi), intent(out) :: y
call genrand_int32_0d( y )
y = ishft( y, -1 )
return
end subroutine genrand_int31_0d
subroutine genrand_int31_1d( y )
intrinsic :: size
integer(kind=wi), dimension(:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 1 ), 1
call genrand_int31_0d( y(i) )
end do
return
end subroutine genrand_int31_1d
subroutine genrand_int31_2d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 2 ), 1
call genrand_int31_1d( y(:,i) )
end do
return
end subroutine genrand_int31_2d
subroutine genrand_int31_3d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 3 ), 1
call genrand_int31_2d( y(:,:,i) )
end do
return
end subroutine genrand_int31_3d
subroutine genrand_int31_4d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 4 ), 1
call genrand_int31_3d( y(:,:,:,i) )
end do
return
end subroutine genrand_int31_4d
subroutine genrand_int31_5d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 5 ), 1
call genrand_int31_4d( y(:,:,:,:,i) )
end do
return
end subroutine genrand_int31_5d
subroutine genrand_int31_6d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 6 ), 1
call genrand_int31_5d( y(:,:,:,:,:,i) )
end do
return
end subroutine genrand_int31_6d
subroutine genrand_int31_7d( y )
intrinsic :: size
integer(kind=wi), dimension(:,:,:,:,:,:,:), intent(out) :: y
integer(kind=wi) :: i
do i = 1, size( y, 7 ), 1
call genrand_int31_6d( y(:,:,:,:,:,:,i) )
end do
return
end subroutine genrand_int31_7d
! generates a random number on [0,1]-real-interval
subroutine genrand_real1_0d( r )
intrinsic :: real
real(kind=wr), intent(out) :: r
integer(kind=wi) :: a
call genrand_int32_0d( a )
r = real( a, kind=wr ) * pi232_1 + p231d232_1
! divided by 2^32-1
return
end subroutine genrand_real1_0d
subroutine genrand_real1_1d( r )
intrinsic :: size
real(kind=wr), dimension(:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 1 ), 1
call genrand_real1_0d( r(i) )
end do
return
end subroutine genrand_real1_1d
subroutine genrand_real1_2d( r )
intrinsic :: size
real(kind=wr), dimension(:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 2 ), 1
call genrand_real1_1d( r(:,i) )
end do
return
end subroutine genrand_real1_2d
subroutine genrand_real1_3d( r )
intrinsic :: size
real(kind=wr), dimension(:,:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 3 ), 1
call genrand_real1_2d( r(:,:,i) )
end do
return
end subroutine genrand_real1_3d
subroutine genrand_real1_4d( r )
intrinsic :: size
real(kind=wr), dimension(:,:,:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 4 ), 1
call genrand_real1_3d( r(:,:,:,i) )
end do
return
end subroutine genrand_real1_4d
subroutine genrand_real1_5d( r )
intrinsic :: size
real(kind=wr), dimension(:,:,:,:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 5 ), 1
call genrand_real1_4d( r(:,:,:,:,i) )
end do
return
end subroutine genrand_real1_5d
subroutine genrand_real1_6d( r )
intrinsic :: size
real(kind=wr), dimension(:,:,:,:,:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 6 ), 1
call genrand_real1_5d( r(:,:,:,:,:,i) )
end do
return
end subroutine genrand_real1_6d
subroutine genrand_real1_7d( r )
intrinsic :: size
real(kind=wr), dimension(:,:,:,:,:,:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 7 ), 1
call genrand_real1_6d( r(:,:,:,:,:,:,i) )
end do
return
end subroutine genrand_real1_7d
! generates a random number on [0,1)-real-interval
subroutine genrand_real2_0d( r )
intrinsic :: real
real(kind=wr), intent(out) :: r
integer(kind=wi) :: a
call genrand_int32_0d( a )
r = real( a, kind=wr ) * pi232 + 0.5_wr
! divided by 2^32
return
end subroutine genrand_real2_0d
subroutine genrand_real2_1d( r )
intrinsic :: size
real(kind=wr), dimension(:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 1 ), 1
call genrand_real2_0d( r(i) )
end do
return
end subroutine genrand_real2_1d
subroutine genrand_real2_2d( r )
intrinsic :: size
real(kind=wr), dimension(:,:), intent(out) :: r
integer(kind=wi) :: i
do i = 1, size( r, 2 ), 1
call genrand_real2_1d( r(:,i) )
end do
return
end subroutine genrand_real2_2d
subroutine genrand_real2_3d( r )