Tools for predicting circRNAs expression with
EPIGENETIC
features byMachine Learning
Circular RNAs ( circRNAs ) are an abundant class of noncoding RNAs with the widespread, cell/tissue specific pattern.
This tool,CIRCScan
, is used for predicting circRNAs expression in a cell/tissue specific manner by machine learning based on epigenetic features.
This software is distributed under the terms of GPL 3.0
Jia-Bin Chen, Shan-Shan Dong, Yan Guo, Tie-Lin Yang
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, P. R. China
📧 yangtielin@mail.xjtu.edu.cn
Jia-Bin Chen
You can contact 📧 johnlcd@qq.com when you have any questions, suggestions, comments, etc.
Please describe in details, and attach your command line and log messages if possible.
- bedtools ( v2.25.0 )
- Python ( recommended: python2.7 )
- R ( >= 3.2.4 )
- R packages: caret (6.0-73), ggplot2 (2.2.0), doParallel (3.2.4), ROCR (1.0-7), etc. ( Dependent packages for different models )
Check the log file ".out" to validate which package is required if get an error info
CMD:
git clone https://github.com/johnlcd/CIRCScan.git
- bin
- anno
- alu_anno_IP.py
- anno_bedpe.py
- anno_intron.py
- bt_intersect_alu_intron.sh
- bt_overlap
- comb_pair_anno.py
- anno_pair
- circscan
- merge_feature
- model
- Circ_pred.R
- Eval_test_cor.R
- Eval_test_perf.R
- feature_selection.R
- make_set.py
- Model_train_FS_exp.R
- Model_train_FS_exp_rep.R
- Model_train_FS_exp_rmo.R
- Model_train_FS_exp_rmo_rep.R
- Model_train_pred_exp.R
- Model_train.R
- Model_train_rep.R
- prepare_train_set
- anno
- data
- Alu
- alu_hg19.bed
- pair_anno_alu
- anno
- GM12878_anno_comb.gz
- H1-hESC_anno_comb.gz
- HeLa-S3_anno_comb.gz
- HepG2_anno_comb.gz
- K562_anno_comb.gz
- NHEK_anno_comb.gz
- DNaseI
- GM12878_dnase.bed
- H1-hESC_dnase.bed
- HeLa-S3_dnase.bed
- HepG2_dnase.bed
- HUVEC_dnase.bed
- K562_dnase.bed
- NHEK_dnase.bed
- histone
- A549_his.bed
- GM12878_his.bed
- H1-hESC_his.bed
- HeLa-S3_his.bed
- HepG2_his.bed
- HUVEC_his.bed
- K562_his.bed
- NHEK_his.bed
- known_circ
- A549_circ_overlap.bed
- GM12878_circ_overlap.bed
- H1-hESC_circ_overlap.bed
- HeLa-S3_circ_overlap.bed
- HepG2_circ_overlap.bed
- HMEC_circ_overlap.bed
- HOB_circ_overlap.bed
- HSMM_circ_overlap.bed
- HUVEC_circ_overlap.bed
- K562_circ_overlap.bed
- NHA_circ_overlap.bed
- NHDF_circ_overlap.bed
- NHEK_circ_overlap.bed
- NHLF_circ_overlap.bed
- pred_true_bycell
- GM12878_pred_true.bed.gz
- H1-hESC_pred_true.bed.gz
- HeLa-S3_pred_true.bed.gz
- HepG2_pred_true.bed.gz
- K562_pred_true.bed.gz
- NHEK_pred_true.bed.gz
- raw_data
- DNaseI.txt.gz
- Histone_part1.txt.gz
- Histone_part2.txt.gz
- select_cell.list
- select_his.list
- Alu
- info
- models_ALL.txt
- models_classification.list
- models_test.list
- models_test.txt
- README.md
- sample
- anno
- feature
- model
CMD:
export PKG_DIR=/path/to/CIRCScan
export PATH=$PKG_DIR/bin:PKG_DIR/bin/anno:$PKG_DIR/bin/model:$PATH
CMD:
cd $PKG_DIR/data
tar -zxvf intron_pairs_data.tgz
cd $PKG_DIR/data/raw_data
gunzip *.gz
cat Histone_part1.txt Histone_part2.txt > Histone.txt
Epigenetic data including DNaseI HS, Histone modification, downloaded from
ENCODE
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
CMD:
For each histone mark: (e.g.: H3K36me3)
zcat wgEncodeBroadHistoneK562H3k36me3StdPk.broadPeak.gz | awk -v OFS='\t' '{print "K562","None","H3K36me3",$1,$2,$3}' > K562_H3K36me3.txt
then merged all marks of selected cell lines:
#rm -f Histon.txt
cat <(echo "cell treatment antibody chr start end" | sed 's/ /\t/g') *.txt > Histon.txt (Put these '.txt' file in one directory)
For DHS:
zcat wgEncodeAwgDnaseUwdukeK562UniPk.narrowPeak.gz | awk -v OFS='\t' '{print "K562","None",$1,$2,$3}' > K562_DNaseI.txt
then merged all cell line:
#rm -f DNaseI.txt
cat <(echo "cell treatment chr start end" | sed 's/ /\t/g') *.txt > DNaseI.txt
CMD:
grep K562 Histon.txt | grep -f $PKG_DIR/data/raw_data/select_his.list | awk -v OFS='\t' '{print $4,$5,$6,$3}' > K562_his.bed
grep K562 DNaseI.txt | awk -v OFS='\t' '{print $4,$5,$6,"DNaseI_HS"}' > K562_dnase.bed
"Histon.txt"
cell treatment antibody chr start end
GM12878 None CTCF chr22 16846634 16869580
GM12878 None CTCF chr22 16850639 16850924
GM12878 None CTCF chr22 16851700 16851834
GM12878 None CTCF chr22 16852344 16852458
GM12878 None CTCF chr22 16853076 16853192
GM12878 None CTCF chr22 16853755 16853871
GM12878 None CTCF chr22 16854517 16854638
GM12878 None CTCF chr22 16857119 16857231
GM12878 None CTCF chr22 16857764 16857871
...
"DNaseI.txt"
lab cell treatment chr start end
Duke 8988T None chr1 564665 564815
Duke 8988T None chr1 565025 565175
Duke 8988T None chr1 565865 566015
Duke 8988T None chr1 714005 714155
Duke 8988T None chr1 762785 762935
Duke 8988T None chr1 766705 766855
Duke 8988T None chr1 767945 768095
Duke 8988T None chr1 794145 794295
Duke 8988T None chr1 795945 796095
...
"K562_his.bed"
chr1 10140 10374 H3K9me3
chr1 118494 118714 H3K9ac
chr1 118556 118713 H3K4me3
chr1 137502 140080 H3K9ac
chr1 138030 140084 H3K4me2
chr1 138411 138738 H3K4me3
chr1 138424 138651 H3K27ac
chr1 138426 138651 H3K79me2
chr1 138934 139174 H3K4me3
chr1 138938 139177 CTCF
...
"K562_dnase.bed"
chr1 115600 115750 DNaseI_HS
chr1 136280 136430 DNaseI_HS
chr1 138960 139110 DNaseI_HS
chr1 235040 235190 DNaseI_HS
chr1 235600 235750 DNaseI_HS
chr1 237640 237790 DNaseI_HS
chr1 521460 521610 DNaseI_HS
chr1 564480 564630 DNaseI_HS
chr1 565280 565430 DNaseI_HS
chr1 565860 566010 DNaseI_HS
...
1. Histone modifications, DNaseI HS ... ( Feature types of "bed"
format )
Make feature list, and overlap intron with feature, annotate intron by features, then combine intron annotation to pair ( "anno_pair"
)
CMD:
anno_pair -t <cell_type> -f <feature (his, dnase ...)> [ --is (Ignor strands) ] --bed <feature.bed>
e.g.:
anno_pair -t K562 -f his --is --bed K562_his.bed
anno_pair -t K562 -f dnase --is --bed K562_dnase.bed
Generate 4 files:
"K562_his.list"
CTCF
EZH2_(39875)
H2A.Z
H3K27ac
H3K27me3
H3K36me3
H3K4me1
H3K4me2
H3K4me3
H3K79me2
H3K9ac
H3K9me3
H4K20me1
"overlap_K562_his"
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 712769 712874 H3K79me2 105
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713056 713748 H3K4me3 607
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713188 713524 H3K27ac 336
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713195 713556 H3K4me2 361
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713199 713548 H3K79me2 349
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713205 713560 H3K9ac 355
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713575 713751 H3K27ac 88
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713578 713747 H3K4me2 85
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713578 713752 H3K79me2 85
chr1 709660 713663 LOC100288069-1-1 1.00 - chr1 713579 713759 H3K9ac 84
...
"intron_anno_K562_his"
Chr Start End INTRON CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1
chr1 12227 12612 DDX11L1-1-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 12721 13220 DDX11L1-1-2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 15038 15795 WASH7P-1-9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 15947 16606 WASH7P-1-8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 18366 24737 WASH7P-1-2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 24891 29320 WASH7P-1-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 700627 701708 LOC100288069-1-6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 701767 703927 LOC100288069-1-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr1 703993 704876 LOC100288069-1-4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
...
"pair_anno_K562_his"
Intron_pair CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1
A1BG-1-4_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-5_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-5_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-6_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-6_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-6_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-7_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-7_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A1BG-1-7_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
...
"K562_dnase.list"
DNaseI_HS
"overlap_K562_dnase"
chr1 705092 708355 LOC100288069-1-3 1.00 - chr1 706265 706415 DNaseI_HS 150
chr1 764484 776579 LINC01128-3-2 1.00 + chr1 767140 767290 DNaseI_HS 150
chr1 764484 783033 LINC01128-2-2 1.00 + chr1 767140 767290 DNaseI_HS 150
chr1 764484 783033 LINC01128-2-2 1.00 + chr1 778220 778370 DNaseI_HS 150
chr1 764484 787306 LINC01128-1-2 1.00 + chr1 767140 767290 DNaseI_HS 150
chr1 764484 787306 LINC01128-1-2 1.00 + chr1 778220 778370 DNaseI_HS 150
chr1 764484 787306 LINC01128-1-2 1.00 + chr1 785040 785190 DNaseI_HS 150
chr1 764484 787306 LINC01128-4-2 1.00 + chr1 767140 767290 DNaseI_HS 150
chr1 764484 787306 LINC01128-4-2 1.00 + chr1 778220 778370 DNaseI_HS 150
chr1 764484 787306 LINC01128-4-2 1.00 + chr1 785040 785190 DNaseI_HS 150
...
"intron_anno_K562_dnase"
Chr Start End INTRON DNaseI_HS
chr1 12227 12612 DDX11L1-1-1 0.000
chr1 12721 13220 DDX11L1-1-2 0.000
chr1 15038 15795 WASH7P-1-9 0.000
chr1 15947 16606 WASH7P-1-8 0.000
chr1 18366 24737 WASH7P-1-2 0.000
chr1 24891 29320 WASH7P-1-1 0.000
chr1 700627 701708 LOC100288069-1-6 0.000
chr1 701767 703927 LOC100288069-1-5 0.000
chr1 703993 704876 LOC100288069-1-4 0.000
...
"pair_anno_K562_dnase"
Intron_pair DNaseI_HS
A1BG-1-4_3 0.000
A1BG-1-5_3 0.000
A1BG-1-5_4 0.000
A1BG-1-6_3 0.000
A1BG-1-6_4 0.000
A1BG-1-6_5 0.000
A1BG-1-7_3 0.000
A1BG-1-7_4 0.000
A1BG-1-7_5 0.000
...
CMD:
merge_feature -t <cell_type>
e.g.:
merge_feature -t K562
Generate "K562_anno_comb"
, e.g.:
Chr Start End Intron_pair Alu DNaseI_HS CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1
chr19 58863648 58863921 A1BG-1-4_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58862756 58863921 A1BG-1-5_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58862756 58863053 A1BG-1-5_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58861735 58863921 A1BG-1-6_3 -1.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58861735 58863053 A1BG-1-6_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58861735 58862017 A1BG-1-6_5 -1.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58858718 58863921 A1BG-1-7_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58858718 58863053 A1BG-1-7_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
chr19 58858718 58862017 A1BG-1-7_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
...
Newly Updated:
Annotated intron (pair) using raw signal (reads count) from ENCODE
"bigWig"
file. ("data/anno" directory)
CMD:
prepare_train_set -t <cell_type> --circ <known_circ.bed> -R <ratio of negative VS positive> [ --sl < list of intron pair length ( sum of 2 introns ) to do stratified random sampling (space seperated 3 number, defult: 20000 30000 40000 ) > ]
OR:
prepare_train_set -t <cell_type> --circ <known_circ.bed (with expression (SRPBM) of 6 column)> ] --exp ( prepare data sets for expression prediction )
e.g.:
prepare_train_set -t K562 --circ K562_circ_overlap.bed -R 1 --sl 30000 50000 70000
prepare_train_set -t K562 --circ K562_circ_overlap.bed --exp
Generate multiple files: "K562_train", "K562_pred", "K562_circ_intron_pair", "K562_IP_part1", "K562_IP_part2", "K562_IP_part3", "K562_IP_part4"
OR:
"K562_exptrain", "K562_exp_pred"
"K562_train"
, "K562_pred"
used for modeling circRNAs expression status
"K562_exp_train"
, "K562_exp_pred"
used for modeling circRNAs expression levels
"K562_train"
Chr Start End Intron_pair Alu DNaseI_HS CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1 Type
chr19 58861735 58863053 A1BG-1-6_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr10 52610424 52619745 A1CF-2-3_1 -0.464 0.000 0.000 0.335 0.062 0.000 0.744 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr10 52595833 52619745 A1CF-2-6_1 -0.850 0.000 0.000 0.482 0.000 0.000 0.716 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr10 52619601 52619745 A1CF-6-4_3 -0.148 0.000 0.000 0.000 0.000 0.000 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr12 9258831 9265132 A2M-1-10_2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr12 9256834 9266139 A2M-1-11_1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr12 9246060 9262930 A2M-1-18_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr12 9242497 9246175 A2M-1-21_17 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
chr12 9231839 9247680 A2M-1-25_16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 F
...
"K562_pred"
Chr Start End Intron_pair Alu DNaseI_HS CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1 Type
chr19 58863648 58863921 A1BG-1-4_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58862756 58863921 A1BG-1-5_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58862756 58863053 A1BG-1-5_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58861735 58863921 A1BG-1-6_3 -1.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58861735 58862017 A1BG-1-6_5 -1.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58858718 58863921 A1BG-1-7_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58858718 58863053 A1BG-1-7_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58858718 58862017 A1BG-1-7_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 P
chr19 58858718 58859006 A1BG-1-7_6 -2.130 0.000 0.000 0.000 0.519 0.000 0.000 0.768 0.000 0.729 0.533 0.000 0.279 0.000 0.000 P
...
"K562_exp_train"
Chr Start End Intron_pair Alu DNaseI_HS CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1 SRPBM
chr12 125558421 125576069 AACS-1-1_5 0.105 0.015 0.032 1.000 0.041 0.000 0.227 1.000 0.111 0.053 0.000 0.0000.000 0.000 1.000 0.00936076724592655
chr5 178199429 178203277 AACSP1-1-8_4 -6.708 0.000 0.000 0.000 0.000 0.000 0.000 0.454 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.0561646034755593
chr5 178199429 178203277 AACSP1-2-8_4 -6.711 0.000 0.000 0.000 0.000 0.000 0.000 0.454 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.0561646034755593
chr9 99413671 99413994 AAED1-1-4_2 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.330 0.000 0.000 0.0000.000 0.221 0.000 0.0280823017377796
chr15 67528316 67529158 AAGAB-1-4_1 -1.888 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.0000.000 0.996 0.749 0.0374430689837062
chr15 67524151 67529158 AAGAB-1-5_1 0.606 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.154 0.000 0.000 1.0000.242 0.938 0.492 0.636532172723005
chr15 67500899 67501882 AAGAB-1-7_5 -1.614 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.168 0.000 0.000 0.9690.562 0.941 0.657 0.0187215344918531
chr15 67528316 67529158 AAGAB-2-4_1 -1.851 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.0000.000 0.996 0.738 0.0374430689837062
chr15 67524151 67529158 AAGAB-2-5_1 0.594 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.153 0.000 0.000 1.0000.262 0.938 0.485 0.636532172723005
...
"K562_exp_pred"
Chr Start End Intron_pair Alu DNaseI_HS CTCF EZH2_(39875) H2A.Z H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K79me2 H3K9ac H3K9me3 H4K20me1 SRPBM
chr19 58863648 58863921 A1BG-1-4_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58862756 58863921 A1BG-1-5_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58862756 58863053 A1BG-1-5_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58861735 58863921 A1BG-1-6_3 -1.985 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58861735 58863053 A1BG-1-6_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58861735 58862017 A1BG-1-6_5 -1.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58858718 58863921 A1BG-1-7_3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58858718 58863053 A1BG-1-7_4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
chr19 58858718 58862017 A1BG-1-7_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 EP
...
NOTE:
known_circ_overlap.bed
: Known circRNAs from RNA-seq data by overlapping the detection of multiple tools
a). Model training ( Used for obtaining rank of importance )
CMD:
circscan --train -t <cell_type> -m <model> -s/-r <seed>/<run (1-5)> -n <cores>
# "-n": used for models training by parellel
# "-s": used for random sample training set ("seed" mode, multiple traning and reproducibility )
# "-r": used for 5 independent CV run ("run" mode)
e.g.:
circscan --train -t K562 -m rf -s 111 -n 8
or:
circscan --train -t K562 -m rf -r 1 -n 8
Generate models and R data file "K562_rf_train.RData"
, log file "K562_rf_train.out"
with model evaluation
b). Feature selection
CMD:
circscan --fs -t <cell_type> -m <model> -n <cores> -l <all/feature_number_list> < --auc / --f1 (referenece index) > [ -pt (type of prediction) raw/prob (probabilities, default) ]
# "-n": used for models training by parellel
# "-l": list of feature number for feature selection. If value is "all", then run feature selection with feature number from 1 to all, if is a list of feature number ( comma separsted ), for example: 1,2,3,4,5,10,15, then run feature selection with feature number you provide
# "--auc / --f1": referenece index to evaluate model performance
# "--pt": type of prediction, defult is 'prob' (probabilities), 'raw' is used for models without probabilities
e.g.:
circscan --fs -t K562 -m rf -n 8 -l all --auc
Generate R data file "K562_rf_FS.RData"
of feature selection and log file "K562_rf_FS.out"
, and "K562_rf_perf_test.txt"
with results of feature selection ( Feature number with highest F1 score )
NOTE:
Feature selection is required to generate and select the best model for circRNAs prediction.
c). Model performance evaluation (testing data)
CMD:
circscan --eval -t <cell_type> -m <model> -n <cores>
# "-n": used for models training by parellel
e.g.:
circscan --eval -t K562 -m rf -n 8
Generate R data file "K562_rf_test_perf_eval.RData"
of model performance evaluation and log file "eval_K562_rf_perf.out"
, and "K562_rf_eval_test_perf"
with results of model performance in testing data
d). CircRNAs prediction and annotation
CMD:
circscan --pred -t <cell_type> -m <model> -n <cores>
# "-n": used for models training by parellel
e.g.:
circscan --pred -t K562 -m rf -n 8
Generate predicted anaotated circRNAs file "K562_rf_pred_true.bed"
Mode 2). Model training, feature selection, and validation (known circRNAs) (Optional)
CMD:
circscan --exp -t <cell_type> -m <model> -n <cores> -sf < all/select_fea_list (comma separated)> -l <known circRNA_intron_FIP_list>
# "-n": used for models training by parellel
# "-sf": list of selected feature list (comma separated, default: all)
# "-l": circBase circRNAs FIP list file
e.g.:
circscan --exp -t K562 -m rf -n 8 -sf all/Alu,H3K36me3,... -l GM12878_circ_FIP.list
a). Model training and feature selection( Used for obtaining rank of importance and select the best features)
CMD:
circscan --exp-fs -t <cell_type> -m <model> -s/-r <seed>/<run (1-5)> -n <cores> [ --RM (remove outlier) ]
# "-n": used for models training by parellel
# "-s": used for random sample training set ("seed" mode, multiple traning and reproducibility )
# "-r": used for 5 independent CV run ("run" mode)
# "--RM": whether remove outlier data points
e.g.:
circscan --exp-fs -t K562 -m rf -s 111 -n 8
or:
circscan --exp-fs -t K562 -m rf -r 1 -n 8
Generate models and R data file "K562_rf_FS_exp.RData"
, log file "K562_rf_FS_exp.out"
, result of model performance "GM12878_rf_perf_test_reg.txt"
with model evaluation of feature selection
b). Model performance evaluation (testing data)
CMD:
circscan --exp-eval -t <cell_type> -m <model> -n <cores>
# "-n": used for models training by parellel
e.g.:
circscan --exp-eval -t K562 -m rf -n 8
Generate models and R data file "K562_rf_pred_exp_all.RData"
, log file "K562_rf_eval_cor.out"
, result of model performance "K562_rf_eval_test_exp_perf"
with model evaluation in testing data, results of predicted expression levels "K562_rf_obs_pred_exp_test.all"
, "K562_rf_obs_pred_exp_train.all"
c). Predict expression
CMD:
circscan --exp-pred -t <cell_type> -m <model> -n <cores> -sf < all/select_fea_list (comma separated)> [ --RM (remove outlier) ]
# "-n": used for models training by parellel
# "-sf": select fea list (according to results of feature selection)
# "--RM": whether remove outlier data points
e.g.:
circscan --exp-pred -t K562 -m rf -n 8 -sf all
Generate predicted circRNAs expression file "K562_rf_train_pred_exp"