This is a tensorflow implementation of SeqMatchSeq model in Learning Natural Language Inference with LSTM.
- Python 3.x
- TensorFlow 1.2.x
I use glove.6B shared by Jeffrey Pennington et al.. It can be found at link.
The data used is Stanford Natural Language Inference (SNLI) corpus which can be downloaded at link.
abandoning useless word vectors
$ python customize_embedding.py --data_dir DATA_DIR --embedding_path EMBEDDING_PATH
training
$ python natural_language_inference.py --ARG=VALUE
evaluating
$ python natural_language_inference.py --forward_only=True --ARG=VALUE
visualizing
$ tensorboard --logdir=DIR
I achieved 81.7415% correct rate on dev set (~3 epochs).